HRS Bibliography

Bibliography Search
Export 112 results:
Filters: Keyword is Genetics  [Clear All Filters]

Forthcoming

Smith JA, Kho M, Zhao W, Yu M, Mitchell CM, Faul JD. Genetic effects and gene-by-education interactions on episodic memory performance and decline in an aging population. Social Science & Medicine. Forthcoming. doi:10.1016/j.socscimed.2018.11.019.
http://www.ncbi.nlm.nih.gov/pubmed/30449520?dopt=Abstract
Ware EB, Schmitz LL, Faul JD, et al. Heterogeneity in polygenic scores for common human traits. bioRxiv. Forthcoming. doi:10.1101/106062.
Niedzwiedz CL, Katikireddi SVittal, Pell JP, Smith DJ. Sex differences in the association between salivary telomere length and multimorbidity within the US Health & Retirement Study. Age and Ageing. Forthcoming. doi:10.1093/ageing/afz071.
Das A. Social integration, self-rated health . . . and genes?. Journal of Aging and Health. Forthcoming. doi:10.1177/0898264319831513.
http://www.ncbi.nlm.nih.gov/pubmed/30819014?dopt=Abstract

2019

Miller B, Arpawong TE, Jiao H, et al. Comparing the utility of mitochondrial and nuclear DNA to adjust for genetic ancestry in association studies. Cells. 2019;8(4). doi:10.3390/cells8040306.
http://www.ncbi.nlm.nih.gov/pubmed/30987182?dopt=Abstract
Robinette JW, Boardman JD, Crimmins EM. Differential vulnerability to neighbourhood disorder: a gene×environment interaction study. Journal of Epidemiology and Community Health. 2019;73(5):388-392. doi:10.1136/jech-2018-211373.
Fletcher JM. Environmental bottlenecks in children's genetic potential for adult socio-economic attainments: Evidence from a health shock. Population Studies (Camb). 2019;73(1):139-148. doi:10.1080/00324728.2018.1498533.
http://www.ncbi.nlm.nih.gov/pubmed/30350750?dopt=Abstract
Sathyan S, Wang T, Ayers E, Verghese J. Genetic basis of motoric cognitive risk syndrome in the Health and Retirement Study. Neurology. 2019;92(13):e1427-e1434. doi:10.1212/WNL.0000000000007141.
http://www.ncbi.nlm.nih.gov/pubmed/30737336?dopt=Abstract
Blue L, Gill L, Faul JD, Bradway K, Stapleton DC. Predicting Receipt of Social Security Administration Disability Benefits Using Biomarkers and Other Physiological Measures: Evidence From the Health and Retirement Study. Journal of Aging and Health. 2019;31(4):555-579. doi:10.1177/0898264317737893.
http://www.ncbi.nlm.nih.gov/pubmed/29254420?dopt=Abstract

2018

Kröger H, Hoffmann R. The association between CVD-related biomarkers and mortality in the Health and Retirement Survey. Demographic Research. 2018;38:1933-2002. doi:10.4054/DemRes.2018.38.62.
Day FR, Ong KK, Perry JRB. Elucidating the genetic basis of social interaction and isolation. Nature Communications. 2018;9(1):1-6. doi:10.1038/s41467-018-04930-1.
Papageorge N, Thom K. Genes, Education, and Labor Market Outcomes: Evidence from the Health and Retirement Study. Cambridge, MA: National Bureau of Economic Research; 2018. doi:10.3386/w25114.
Hupfeld KE, Vaillancourt DE, Seidler RD. Genetic markers of dopaminergic transmission predict performance for older males but not females. Neurobiology of Aging. 2018;66(180):.e11-180.e21. doi:10.1016/j.neurobiolaging.2018.02.005.
http://www.ncbi.nlm.nih.gov/pubmed/29525179?dopt=Abstract
Wehby GL, Domingue BW, Wolinsky FD. Genetic risks for chronic conditions: Implications for long-term wellbeing. Journals of Gerontology, Series A: Biological Sciences & Medical Sciences. 2018;73(4):477-483. doi:10.1093/gerona/glx154.
http://www.ncbi.nlm.nih.gov/pubmed/28958056?dopt=Abstract
Yashin AI, Arbeev KG, Wu D, et al. Genetics of human longevity from incomplete data: New findings from the long life family study. Journals of Gerontology, Series A: Biological Sciences & Medical Sciences. 2018;73(11):1472-1481. doi:10.1093/gerona/gly057.
http://www.ncbi.nlm.nih.gov/pubmed/30299504?dopt=Abstract
Yashin AI, Fang F, Kovtun M, et al. Hidden heterogeneity in Alzheimer's disease: Insights from genetic association studies and other analyses. Experimental Gerontology. 2018;107:148-160. doi:10.1016/j.exger.2017.10.020.
Wu Y, Zeng J, Zhang F, et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nature Communications. 2018;9(1). doi:10.1038/s41467-018-03371-0.
Van Dam A. It’s better to be born rich than gifted. The Washington Post. https://www.washingtonpost.com/business/2018/10/09/its-better-be-born-rich-than-talented/?noredirect=on&utm_term=.e6c0cc49f545. Published 2018.
Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Human Molecular Genetics. 2018;27(20):3641-3649. doi:10.1093/hmg/ddy271.
http://www.ncbi.nlm.nih.gov/pubmed/30124842?dopt=Abstract
Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Human Molecular Genetics. 2018;27(20):3641-3649. doi:10.1093/hmg/ddy271.
Qiao Z, Powell J. MHC-Dependent Mate Selection within 872 Spousal Pairs of European Ancestry from the Health and Retirement Study. Genes. 2018;9(2):53. doi:10.3390/genes9010053.
Primes G, Fieder M. Real-life helping behaviours in North America: A genome-wide association approach. PLoS One. 2018;13(1):e0190950. doi:10.1371/journal.pone.0190950.
http://www.ncbi.nlm.nih.gov/pubmed/29324852?dopt=Abstract
Wolf DA, Middleton FA. A role for genes in the ‘caregiver stress process’?. Translational Psychiatry. 2018;8(1). doi:10.1038/s41398-018-0275-7.
Liu H. Social and Genetic Pathways in Multigenerational Transmission of Educational Attainment. American Sociological Review. 2018;83(2):278-304. doi:10.1177/0003122418759651.
Mills MC, Barban N, Tropf FC. The Sociogenomics of Polygenic Scores of Reproductive Behavior and Their Relationship to Other Fertility Traits. RSF: The Russell Sage Foundation Journal of the Social Sciences. 2018;4(4):122-136. doi:10.7758/rsf.2018.4.4.07.