HRS Bibliography

Bibliography Search
Export 644 results:
Filters: First Letter Of Title is P  [Clear All Filters]

Journal Article

Theeke LA. Predictors of loneliness in U.S. adults over age sixty-five. Arch Psychiatr Nurs. 2009;23(5):387-96. doi:10.1016/j.apnu.2008.11.002.
http://www.ncbi.nlm.nih.gov/pubmed/19766930?dopt=Abstract
Cmar JL, McDonnall MC, G Mitchell L. Predictors of Job Retention After Onset of Visual Impairment in Late Middle Age. Journal of Aging and Health. Forthcoming:8982643241244963. doi:10.1177/08982643241244963.
Lee YG, Lown JM, Sharpe DL. Predictors of Holding Consumer and Mortgage Debt among Older Americans. Journal of Family and Economic Issues. 2007;28(2):305. doi:https://doi.org/10.1007/s10834-007-9055-x.
Teresa M. Bell, Wang J, Nolly R, Ozdenerol E, Relyea G, Zarzaur BL. Predictors of functional limitation trajectories after injury in a nationally representative U.S. older adult population. Annals of Epidemiology. 2015;25(12):894.
Nicklett EJoy, Cheng GJianjia, Morris ZA. Predictors of food insecurity among older adults before and during COVID-19 in the United States. Front Public Health. 2023;11:1112575. doi:10.3389/fpubh.2023.1112575.
Chen T-Y, Janke MC. Predictors of falls among community-dwelling older adults with cancer: results from the health and retirement study. Supportive Care in Cancer. 2014;22(2):479-485.
Beydoun HA, Beydoun MA, Weiss J, et al. Predictors of Covid-19 level of concern among older adults from the health and retirement study. Scientific Reports. 2022;12(1):4396. doi:10.1038/s41598-022-08332-8.
Zheng H, Cagney K, Choi Y. Predictors of cognitive functioning trajectories among older Americans: A new investigation covering 20 years of age- and non-age-related cognitive change. PLoS One. 2023;18(2):e0281139. doi:10.1371/journal.pone.0281139.
Lou Y, Edmonds SW, Jones MP, et al. Predictors of bone mineral density testing among older women on Medicare. Osteoporos Int. 2016;27(12):3577-3586. doi:10.1007/s00198-016-3688-2.
http://www.ncbi.nlm.nih.gov/pubmed/27358177?dopt=Abstract
Levine ME, Harrati A, Crimmins EM. Predictors and implications of accelerated cognitive aging. Biodemography and Social Biology. 2018;64(2):83-101. doi:10.1080/19485565.2018.1552513.
Lundin A, Leijon O, Vaez M, Hallgren M, Torgén M. Predictive validity of the Work Ability Index and its individual items in the general population. Scandinavian Journal of Public Health. 2017;45(4):350-356. doi:10.1177/1403494817702759.
Hurd MD, McGarry K. The Predictive Validity of Subjective Probabilities of Survival. The Economic Journal. 2002;112(482).
Elder TE. The predictive validity of subjective mortality expectations: evidence from the health and retirement study. Demography. 2013;50(2):569. doi:10.1007/s13524-012-0164-2.
Shen X, Yin F, Jiao C. Predictive Models of Life Satisfaction in Older People: A Machine Learning Approach. Int J Environ Res Public Health. 2023;20(3). doi:10.3390/ijerph20032445.
Chowdhury RI, M. Islam A. Predictive Models for Trajectory Risks Prediction from Repeated Ordinal Outcomes. Bulletin of the Malaysian Mathematical Sciences Society. 2022. doi:10.1007/s40840-022-01277-1.
Chowdhury RI, M. Islam A. Prediction of Disease Status: Transition Model Approach for Repeated Measures. Pakistan Journal of Statistics . 2014;30(2):181-196.PDF icon PAKJSTAT.pdf (403.25 KB)
M. Islam A, Chowdhury RI. Prediction of disease status: A regressive model approach for repeated measures. Statistical Methodology. 2010;7(5):520-540. doi:https://doi.org/10.1016/j.stamet.2010.03.001.
Preisser JS, Moss K, Finlayson TL, Jones JA, Weintraub JA. Prediction Model Development and Validation of 12-Year Incident Edentulism of Older Adults in the United States. JDR Clinical & Translational Research. Forthcoming. doi:10.1177/23800844221112062.
Choi NG, Bohman TM. Predicting the changes in depressive symptomatology in later life: how much do changes in health status, marital and caregiving status, work and volunteering, and health-related behaviors contribute?. J Aging Health. 2007;19(1):152-77. doi:10.1177/0898264306297602.
http://www.ncbi.nlm.nih.gov/pubmed/17215206?dopt=Abstract
Geiger JR, Wilks SE, Livermore MM. Predicting SNAP Participation in Older Adults: Do Age Categorizations Matter?. Educational Gerontology. 2014;40(12):932-946. doi:10.1080/03601277.2014.912837.
Blue L, Gill L, Faul J, Bradway K, Stapleton D. Predicting Receipt of Social Security Administration Disability Benefits Using Biomarkers and Other Physiological Measures: Evidence From the Health and Retirement Study. Journal of Aging and Health. 2019;31(4):555-579. doi:10.1177/0898264317737893.
http://www.ncbi.nlm.nih.gov/pubmed/29254420?dopt=Abstract
Leaf DErmini, Tysinger B, Goldman DP, Lakdawalla D. Predicting quantity and quality of life with the Future Elderly Model. Health Economics. 2020. doi:10.1002/hec.4169.
Waddell EL, Jacobs-Lawson JM. Predicting positive well-being in older men and women. Int J Aging Hum Dev. 2010;70(3):181-97. doi:10.2190/AG.70.3.a.
http://www.ncbi.nlm.nih.gov/pubmed/20503804?dopt=Abstract
Banaszak-Holl J, A. Fendrick M, Foster NL, et al. Predicting Nursing Home Admission: Estimates from a seven-year follow-up of a nationally representative sample of older Americans. Alzheimer Disease and Associated Disorders. 2004;18(2):83-89.
Puterman E, Weiss J, Hives BA, et al. Predicting mortality from 57 economic, behavioral, social, and psychological factors. Proceedings of the National Academy of Sciences. 2020. doi:10.1073/pnas.1918455117.