HRS Bibliography

Bibliography Search
Export 991 results:
Filters: First Letter Of Last Name is F  [Clear All Filters]

2019

Brazel DM, Jiang Y, Hughey JM, et al. Exome Chip Meta-analysis Fine Maps Causal Variants and Elucidates the Genetic Architecture of Rare Coding Variants in Smoking and Alcohol Use. Biological Psychiatry. 2019;85(11):946-955. doi:10.1016/j.biopsych.2018.11.024.
Brazel DM, Jiang Y, Hughey JM, et al. Exome Chip Meta-analysis Fine Maps Causal Variants and Elucidates the Genetic Architecture of Rare Coding Variants in Smoking and Alcohol Use. Biological Psychiatry. 2019;85(11):946-955. doi:10.1016/j.biopsych.2018.11.024.
Weintraub JA, Orleans B, Fontana MAlan, Phillips C, Jones JA. Factors associated with becoming edentulous in the US Health and Retirement Study. Journal of the American Geriatrics Society. 2019. doi:10.1111/jgs.16079.
http://www.ncbi.nlm.nih.gov/pubmed/31335967?dopt=Abstract
Fitzpatrick K, Greenhalgh-Stanley N, Ploeg MVer. Food deserts and diet-related health outcomes of the elderly. Food Policy. 2019;87:101747. doi:https://doi.org/10.1016/j.foodpol.2019.101747.
Herd P, Freese J, Sicinski K, et al. Genes, Gender Inequality, and Educational Attainment. AMERICAN SOCIOLOGICAL REVIEW. 2019;84:1069-1098. doi:10.1177/0003122419886550.
Timmers PRhj, Mounier N, Lall K, et al. Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances. Elife. 2019;8:e39856. doi:10.7554/eLife.39856.
Timmers PRhj, Mounier N, Lall K, et al. Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances. Elife. 2019;8:e39856. doi:10.7554/eLife.39856.
Thyagarajan B, Shippee N, Parsons H, et al. How Does Subjective Age Get “Under the Skin”? The Association Between Biomarkers and Feeling Older or Younger Than One’s Age: The Health and Retirement Study. Innovation in Aging. 2019;3(4):igz035. doi:10.1093/geroni/igz035.
Gale WG, Gelfond H, Fichtner J. How will retirement saving change by 2050? Prospects for the millennial generation. Washington, DC: Brookings Institution; 2019:1-51.
Freedman VA, Cornman JC, Carr D, Lucas RE. Late life disability and experienced wellbeing: Are economic resources a buffer?. Disability and Health Journal. 2019. doi:10.1016/j.dhjo.2019.02.003.
http://www.ncbi.nlm.nih.gov/pubmed/30871953?dopt=Abstract
Williams-Farrelly M, Ferraro KF. LIFE COURSE ORIGINS OF FRAILTY IN LATER LIFE. Innovation in Aging. 2019;3(Suppl 1):S59 - S59.
Fu C-H. Living arrangement and caregiving expectation: the effect of residential proximity on inter vivos transfer. Journal of Population Economics. 2019;32(1). doi:10.1007/s00148-018-0699-7.
Zahodne LB, A Kraal Z, Zaheed AB, Farris P, Sol K. Longitudinal effects of race, ethnicity, and psychosocial disadvantage on systemic inflammation. SSM Population Health. 2019;7:100391. doi:10.1016/j.ssmph.2019.100391.
http://www.ncbi.nlm.nih.gov/pubmed/31193191?dopt=Abstract
Waite LL, Fishman P, Basu A, Crane PK, Larson EB, Coe NB. Medicare expenditures attributable to dementia. Health Services Research. 2019. doi:10.1111/1475-6773.13134.
http://www.ncbi.nlm.nih.gov/pubmed/30868557?dopt=Abstract
Deelen J, Evans DS, Arking DE, et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nature Communications. 2019;10(1):3669. doi:10.1038/s41467-019-11558-2.
http://www.ncbi.nlm.nih.gov/pubmed/31413261?dopt=Abstract
Deelen J, Evans DS, Arking DE, et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nature Communications. 2019;10(1):3669. doi:10.1038/s41467-019-11558-2.
http://www.ncbi.nlm.nih.gov/pubmed/31413261?dopt=Abstract
Favreault M, Smith KE. Modeling Income in the Near Term 8 and 2014. Urban Institute; 2019.
Kilpeläinen TO, Bentley AR, Noordam R, et al. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nature Communications. 2019;10(1):376. doi:10.1038/s41467-018-08008-w.
Kilpeläinen TO, Bentley AR, Noordam R, et al. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nature Communications. 2019;10(1):376. doi:10.1038/s41467-018-08008-w.
Kilpeläinen TO, Bentley AR, Noordam R, et al. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nature Communications. 2019;10(1):376. doi:10.1038/s41467-018-08008-w.
Kilpeläinen TO, Bentley AR, Noordam R, et al. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nature Communications. 2019;10(1):376. doi:10.1038/s41467-018-08008-w.
Kilpeläinen TO, Bentley AR, Noordam R, et al. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nature Communications. 2019;10(1):376. doi:10.1038/s41467-018-08008-w.
Kilpeläinen TO, Bentley AR, Noordam R, et al. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nature Communications. 2019;10(1):376. doi:10.1038/s41467-018-08008-w.
Kilpeläinen TO, Bentley AR, Noordam R, et al. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nature Communications. 2019;10(1):376. doi:10.1038/s41467-018-08008-w.
Kilpeläinen TO, Bentley AR, Noordam R, et al. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nature Communications. 2019;10(1):376. doi:10.1038/s41467-018-08008-w.