HRS Bibliography

Bibliography Search
Export 622 results:
Filters: First Letter Of Title is C  [Clear All Filters]

V

Vable AM. Changes to the Social Patterning of Economic Resources and the Distribution of Mental and Biological Health Markers. 2015.
Vable AM, Canning D, M. Glymour M, Kawachi I, Jimenez MP, Subramanian SV. Can social policy influence socioeconomic disparities? Korean War GI Bill eligibility and markers of depression. Ann Epidemiol. 2016;26(2):129-135.e3. doi:10.1016/j.annepidem.2015.12.003.
http://www.ncbi.nlm.nih.gov/pubmed/26778285?dopt=Abstract
van Raalte AA, Sasson I, Martikainen P. The case for monitoring life-span inequality. Science. 2018;362(6418):1002-1004. doi:10.1126/science.aau5811.
Van Winkle Z, Leopold T. The Cost of Widowhood: A Matching Study of Process and Event. SocArXiv Papers. Forthcoming. doi:10.31235/osf.io/t8jef.
Díaz-Venegas C, Downer B, Langa KM, Wong R. Cognitive Functioning of U.S. Adults by Race and Hispanic Origin. In: Vega WA, Angel JL, Robledo LMiguel F, Markides KS, eds. Contextualizing Health and Aging in the Americas. Contextualizing Health and Aging in the Americas. Cham: Springer International Publishing; 2018:85 - 107. doi:10.1007/978-3-030-00584-910.1007/978-3-030-00584-9_5.
Venti SF, Wise DA. The Cause of Wealth Dispersion at Retirement: Choice or Chance?. American Economic Review. 1998;88(2):185-91.
Venti SF, Wise DA. Choice, Chance, and Wealth Dispersion at Retirement. In: Ogura S, Tachibanaki T, Wise DA, eds. Aging Issues in the United States and Japan. Aging Issues in the United States and Japan. Chicago: University of Chicago Press; 2001:25-64. doi:10.3386/w7521.
Verma C, Zhang M, Li M, Bergren S, Dong XQ. A Comparison of Cognitive Function in Pine Study to Health and Retirement Study & CHARLS Study. Innovation in Aging. 2020;4(Suppl 1):924. doi:10.1093/geroni/igaa057.3390.
Vivek S, Thyagarajan B, Nelson HHammond, Prizment A, Crimmins EM, Faul J. COMBINED EFFECT OF CMV SEROPOSITIVITY AND SYSTEMIC INFLAMMATION ON DEMENTIA PREVALENCE IN CANCER SURVIVORS. Innovation in Aging. 2019;3:S461-S461. doi:10.1093/geroni/igz038.1724.
Vivek S, Nelson HHammond, Prizment A, Faul J, Crimmins EM, Thyagarajan B. Cross sectional association between cytomegalovirus seropositivity, inflammation and cognitive impairment in elderly cancer survivors. Cancer Causes & Control. 2022;33(1):81-90. doi:https://doi.org/10.1007/s10552-021-01504-3.
Vonk JMJ, Gross AL, Zammit AR, et al. Cross-national harmonization of cognitive measures across HRS HCAP (USA) and LASI-DAD (India). PLoS One. 2022;17(2):e0264166. doi:10.1371/journal.pone.0264166.

W

Waite LJ, Gallagher M. The Case for Marriage: Why Married People are Happier, Healthier, and Better Off Financially. New York: Doubleday; 2000.
Walsh EG, Wu B, Mitchell JB, Berkman LF. Cognitive function and acute care utilization. J Gerontol B Psychol Sci Soc Sci. 2003;58(1):S38-49. doi:10.1093/geronb/58.1.s38.
http://www.ncbi.nlm.nih.gov/pubmed/12496307?dopt=Abstract
Walter S, Tchetgen Tchetgen EJ, Patton KK, et al. Changes in Depressive Symptoms and Incidence of First Stroke Among Middle-Aged and Older US Adults. J Am Heart Assoc. 2015;4(5). doi:10.1161/JAHA.115.001923.
http://www.ncbi.nlm.nih.gov/pubmed/25971438?dopt=Abstract
Wan X, Lighthall NR, Xie R. Consistent and robust predictors of Internet Use among older adults over time identified by machine learning. Computers in Human Behavior. 2022;137:107413. doi:https://doi.org/10.1016/j.chb.2022.107413.
Wang Y-H, Enguidanos S. Comparing Variations in Advance Directives Timing among Older Adults with End-Stage Renal Disease versus Cancer. American Journal of Hospice and Palliative Medicine. Forthcoming. doi:10.1177/10499091221097676.
Wang H, Nandakumar P, Tekola-Ayele F, et al. Combined linkage and association analysis identifies rare and low frequency variants for blood pressure at 1q31. European Journal of Human Genetics. 2019;27(2):269-277. doi:10.1038/s41431-018-0277-1.
Wang Y, Shen H, Wong R, Amano T. CORRELATES AND HEALTH OUTCOMES OF LONG-TERM VOLUNTEERING: EVIDENCE FROM 16 YEARS OF THE HEALTH AND RETIREMENT STUDY. Innovation in Aging. 2018;2:331-331. doi:10.1093/geroni/igy023.1211.
Wang Q, Mejía-Guevara I, Rist PM, Walter S, Capistrant BD, M. Glymour M. Changes in Memory before and after Stroke Differ by Age and Sex, but Not by Race. Cerebrovascular Diseases. 2014;37(4):235-243.
Wang K, Kubanga K. Correlates of internet use among African American older adults: Gender and age differences. International Journal of Population Studies. 2020;6(2):26-38. doi:10.18063/ijps.v6i2.1226.
Ware EB, Faul J, Mitchell C, Bakulski KM. Considering the APOE locus in Alzheimer's disease polygenic scores in the Health and Retirement Study: a longitudinal panel study. BMC Medical Genomics. 2020;13(1):164. doi:10.1186/s12920-020-00815-9.
Ware EB, Mukherjee B, Sun YV, Diez-Roux AV, Kardia SLR. Comparative genome-wide association studies of a depressive symptom phenotype in a repeated measures setting by race/ethnicity in the Multi-Ethnic Study of Atherosclerosis. BMC Genet. 2015;16:118. doi:10.1186/s12863-015-0274-0.
http://www.ncbi.nlm.nih.gov/pubmed/26459564?dopt=Abstract
Warner DF, Schiltz NK, Stange KC, et al. Complex multimorbidity and health outcomes in older adult cancer survivors . Family Medicine and Community Health. 2017;5(2):129-138. doi:10.15212/FMCH.2017.0127.
Warner DF, Koroukian SM, Schiltz NK, et al. Complex multimorbidity and breast cancer screening among midlife and older women: The role of perceived need. The Gerontologist. 2019;59(Supplement_1):S77 - S87. doi:10.1093/geront/gny180.
Wei MY, Luster JE, Chan C-L, Min LC. Comprehensive review of ICD-9 code accuracies to measure multimorbidity in administrative data. BMC Health Services Research. 2020;20. doi:10.1186/s12913-020-05207-4.