HRS Bibliography

Bibliography Search
Export 604 results:
Filters: First Letter Of Last Name is V  [Clear All Filters]

Journal Article

Michaud P-C, Vermeulen F. A Collective Retirement Model: Identification and estimation in the presence of externalities. Labour Economics. 2004;18(2):159-167.
Vivek S, Thyagarajan B, Nelson HHammond, Prizment A, Crimmins EM, Faul J. COMBINED EFFECT OF CMV SEROPOSITIVITY AND SYSTEMIC INFLAMMATION ON DEMENTIA PREVALENCE IN CANCER SURVIVORS. Innovation in Aging. 2019;3:S461-S461. doi:10.1093/geroni/igz038.1724.
Rietveld CA, Esko T, Davies G, et al. Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proc Natl Acad Sci U S A. 2014;111(38):13790-4. doi:10.1073/pnas.1404623111.
http://www.ncbi.nlm.nih.gov/pubmed/25201988?dopt=Abstract
Rietveld CA, Esko T, Davies G, et al. Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proc Natl Acad Sci U S A. 2014;111(38):13790-4. doi:10.1073/pnas.1404623111.
http://www.ncbi.nlm.nih.gov/pubmed/25201988?dopt=Abstract
Rietveld CA, Esko T, Davies G, et al. Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proc Natl Acad Sci U S A. 2014;111(38):13790-4. doi:10.1073/pnas.1404623111.
http://www.ncbi.nlm.nih.gov/pubmed/25201988?dopt=Abstract
Rietveld CA, Esko T, Davies G, et al. Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proc Natl Acad Sci U S A. 2014;111(38):13790-4. doi:10.1073/pnas.1404623111.
http://www.ncbi.nlm.nih.gov/pubmed/25201988?dopt=Abstract
Rietveld CA, Esko T, Davies G, et al. Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proc Natl Acad Sci U S A. 2014;111(38):13790-4. doi:10.1073/pnas.1404623111.
http://www.ncbi.nlm.nih.gov/pubmed/25201988?dopt=Abstract
Stenholm S, Westerlund H, Head J, et al. Comorbidity and functional trajectories from midlife to old age: the Health and Retirement Study. J Gerontol A Biol Sci Med Sci. 2015;70(3):332-8. doi:10.1093/gerona/glu113.
http://www.ncbi.nlm.nih.gov/pubmed/25060316?dopt=Abstract
Verma C, Zhang M, Li M, Bergren S, Dong XQ. A Comparison of Cognitive Function in Pine Study to Health and Retirement Study & CHARLS Study. Innovation in Aging. 2020;4(Suppl 1):924. doi:10.1093/geroni/igaa057.3390.
Marshall A, Nazroo J, Feeney K, Lee J, Vanhoutte B, Pendleton N. Comparison of hypertension healthcare outcomes among older people in the USA and England. J Epidemiol Community Health. 2016;70(3):264-70. doi:10.1136/jech-2014-205336.
http://www.ncbi.nlm.nih.gov/pubmed/26598759?dopt=Abstract
Hernandez B, Voll S, Lewis NA, et al. Comparisons of disease cluster patterns, prevalence and health factors in the USA, Canada, England and Ireland. BMC Public Health. 2021;21(1):1674. doi:10.1186/s12889-021-11706-8.
Ben-Avraham D, Karasik D, Verghese J, et al. The complex genetics of gait speed: genome-wide meta-analysis approach. Aging (Albany NY). 2017;9(1):209-246. doi:10.18632/aging.101151.
http://www.ncbi.nlm.nih.gov/pubmed/28077804?dopt=Abstract
Ben-Avraham D, Karasik D, Verghese J, et al. The complex genetics of gait speed: genome-wide meta-analysis approach. Aging (Albany NY). 2017;9(1):209-246. doi:10.18632/aging.101151.
http://www.ncbi.nlm.nih.gov/pubmed/28077804?dopt=Abstract
Ben-Avraham D, Karasik D, Verghese J, et al. The complex genetics of gait speed: genome-wide meta-analysis approach. Aging (Albany NY). 2017;9(1):209-246. doi:10.18632/aging.101151.
http://www.ncbi.nlm.nih.gov/pubmed/28077804?dopt=Abstract
Ben-Avraham D, Karasik D, Verghese J, et al. The complex genetics of gait speed: genome-wide meta-analysis approach. Aging (Albany NY). 2017;9(1):209-246. doi:10.18632/aging.101151.
http://www.ncbi.nlm.nih.gov/pubmed/28077804?dopt=Abstract
Higgins-Chen AT, Thrush KL, Wang Y, et al. A computational solution for bolstering reliability of epigenetic clocks: implications for clinical trials and longitudinal tracking. Nature Aging. 2022;2:644–661. doi:10.1038/s43587-022-00248-2.
Higgins-Chen AT, Thrush KL, Wang Y, et al. A computational solution for bolstering reliability of epigenetic clocks: implications for clinical trials and longitudinal tracking. Nature Aging. 2022;2:644–661. doi:10.1038/s43587-022-00248-2.
Higgins-Chen AT, Thrush KL, Wang Y, et al. A computational solution for bolstering reliability of epigenetic clocks: implications for clinical trials and longitudinal tracking. Nature Aging. 2022;2:644–661. doi:10.1038/s43587-022-00248-2.
Nead KT, Li A, Wehner MR, et al. Contribution of common non-synonymous variants in PCSK1 to body mass index variation and risk of obesity: a systematic review and meta-analysis with evidence from up to 331 175 individuals. Human Molecular Genetics. 2015;24(12):3582-3594. doi:10.1093/hmg/ddv097.
Gueltzow M, Bijlsma MJ, van Lenthe FJ, Myrskylä M. The Contribution of Health Behaviors to Depression Risk across Birth Cohorts. Epidemiology. 2022;33(6):880-889. doi:10.1097/EDE.0000000000001524.
Gueltzow M, Bijlsma MJ, van Lenthe FJ, Myrskylä M. The Contribution of Lifestyle Patterns to Clustering of Elevated Depressive Symptoms within Birth Cohorts. International Journal of Epidemiology. 2021;50(Supplement_1). doi:10.1093/ije/dyab168.244.
Duan-Porter W, Hastings SNicole, Neelon B, Van Houtven CHarold. Control beliefs and risk for 4-year mortality in older adults: a prospective cohort study. BMC Geriatr. 2017;17(1):13. doi:10.1186/s12877-016-0390-3.
http://www.ncbi.nlm.nih.gov/pubmed/28077089?dopt=Abstract
Duan-Porter W, Hastings SNicole, Neelon B, Van Houtven CHarold. Control Beliefs and Risk for Death, Stroke and Myocardial Infarction in Middle-aged and Older Adults: An Observational Study. J Gen Intern Med. 2015;30(8):1156-63. doi:10.1007/s11606-015-3275-9.
http://www.ncbi.nlm.nih.gov/pubmed/25792069?dopt=Abstract
Van Winkle Z, Leopold T. The Cost of Widowhood: A Matching Study of Process and Event. SocArXiv Papers. Forthcoming. doi:10.31235/osf.io/t8jef.
Anderlucci L, Viroli C. Covariance pattern mixture models for the analysis of multivariate heterogeneous longitudinal data. Annals of Applied Statistics. 2015;9(2):777-800. doi:10.1214/15-aoas816.