HRS Bibliography

Bibliography Search
Export 913 results:
Filters: First Letter Of Last Name is F  [Clear All Filters]

C

Rietveld CA, Esko T, Davies G, et al. Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proc Natl Acad Sci U S A. 2014;111(38):13790-4. doi:10.1073/pnas.1404623111.
http://www.ncbi.nlm.nih.gov/pubmed/25201988?dopt=Abstract
Fluegge KR. Comorbidities Among Persons With Incident Psychiatric Condition. Gerontology and Geriatric Medicine. 2016;2(1-10). doi: 10.1177/2333721416635001.
Forjaz MJoao Bette. Comparative Models of the Impact of Social Support on Psychological Distress in Cancer Patients. 2000.
Blundell R, Crawford R, French E, Tetlow G. Comparing Retirement Wealth Trajectories on Both Sides of the Pond . Ann Arbor: Institute for Social Research; 2015.
Côté-Sergent A, Fonseca R, Strumpf E. Comparing the education gradient in health deterioration among the elderly in six OECD countries. Health Policy. 2020;124:326 - 335. doi:https://doi.org/10.1016/j.healthpol.2019.12.015.
Fong JH, Feng J. Comparing the loss of functional independence of older adults in the U.S. and China. Archives of Gerontology and Geriatrics. 2018;74:123-127. doi:10.1016/j.archger.2017.10.020.
Fong JH, Feng J. Comparing the loss of functional independence of older adults in the U.S. and China. Archives of Gerontology and Geriatrics. 2018;74:123-127. doi:10.1016/j.archger.2017.10.020.
Fernandes M, Meijer E, Zamarro G. Comparison between SHARE, ELSA, and HRS. In: First Results from the Survey of Health, Ageing and Retirement in Europe (2004-2007): Starting the longitudinal dimension. First Results from the Survey of Health, Ageing and Retirement in Europe (2004-2007): Starting the longitudinal dimension. Mannhiem, Germany: Mannheim Research Institute for the Economics of Aging (MEA); 2008:23-63.
Marshall A, Nazroo J, Feeney K, Lee J, Vanhoutte B, Pendleton N. Comparison of hypertension healthcare outcomes among older people in the USA and England. J Epidemiol Community Health. 2016;70(3):264-70. doi:10.1136/jech-2014-205336.
http://www.ncbi.nlm.nih.gov/pubmed/26598759?dopt=Abstract
Sonnega A, Helppie-McFall B, Hudomiet P, Willis RJ, Fisher GG. A comparison of subjective and objective job demands and fit with personal resources as predictors of retirement timing in a national U.S. Sample. Work, Aging and Retirement. 2018;4(1). doi:10.1093/workar/wax016.
Langa KM, Larson EB, Crimmins EM, et al. A Comparison of the Prevalence of Dementia in the United States in 2000 and 2012. JAMA Intern Med. 2017;177(1):51-58. doi:10.1001/jamainternmed.2016.6807.
http://www.ncbi.nlm.nih.gov/pubmed/27893041?dopt=Abstract
Ben-Avraham D, Karasik D, Verghese J, et al. The complex genetics of gait speed: genome-wide meta-analysis approach. Aging (Albany NY). 2017;9(1):209-246. doi:10.18632/aging.101151.
http://www.ncbi.nlm.nih.gov/pubmed/28077804?dopt=Abstract
Ben-Avraham D, Karasik D, Verghese J, et al. The complex genetics of gait speed: genome-wide meta-analysis approach. Aging (Albany NY). 2017;9(1):209-246. doi:10.18632/aging.101151.
http://www.ncbi.nlm.nih.gov/pubmed/28077804?dopt=Abstract
Ben-Avraham D, Karasik D, Verghese J, et al. The complex genetics of gait speed: genome-wide meta-analysis approach. Aging (Albany NY). 2017;9(1):209-246. doi:10.18632/aging.101151.
http://www.ncbi.nlm.nih.gov/pubmed/28077804?dopt=Abstract
Nho K, Ramanan VK, Horgusluoglu E, et al. Comprehensive gene- and pathway-based analysis of depressive symptoms in older adults. J Alzheimers Dis. 2015;45(4):1197-206. doi:10.3233/JAD-148009.
http://www.ncbi.nlm.nih.gov/pubmed/25690665?dopt=Abstract
Nho K, Ramanan VK, Horgusluoglu E, et al. Comprehensive gene- and pathway-based analysis of depressive symptoms in older adults. J Alzheimers Dis. 2015;45(4):1197-206. doi:10.3233/JAD-148009.
http://www.ncbi.nlm.nih.gov/pubmed/25690665?dopt=Abstract
Higgins-Chen AT, Thrush KL, Wang Y, et al. A computational solution for bolstering reliability of epigenetic clocks: implications for clinical trials and longitudinal tracking. Nature Aging. 2022;2:644–661. doi:10.1038/s43587-022-00248-2.
Falba T. Consequences of Health Events: Economics and Behavioral Outcomes in the Health and Retirement Study. 2000.
Ware EB, Faul J, Mitchell C, Bakulski KM. Considering the APOE locus in Alzheimer's disease polygenic scores in the Health and Retirement Study: a longitudinal panel study. BMC Medical Genomics. 2020;13(1):164. doi:10.1186/s12920-020-00815-9.
Wilkinson LR, Ferraro KF, Kemp BR. Contextualization of Survey Data: What Do We Gain and Does It Matter?. Research in Human Development. 2017;14(3):234-252. doi:10.1080/15427609.2017.1340049.
Nead KT, Li A, Wehner MR, et al. Contribution of common non-synonymous variants in PCSK1 to body mass index variation and risk of obesity: a systematic review and meta-analysis with evidence from up to 331 175 individuals. Human Molecular Genetics. 2015;24(12):3582-3594. doi:10.1093/hmg/ddv097.
Nead KT, Li A, Wehner MR, et al. Contribution of common non-synonymous variants in PCSK1 to body mass index variation and risk of obesity: a systematic review and meta-analysis with evidence from up to 331 175 individuals. Human Molecular Genetics. 2015;24(12):3582-3594. doi:10.1093/hmg/ddv097.
Nead KT, Li A, Wehner MR, et al. Contribution of common non-synonymous variants in PCSK1 to body mass index variation and risk of obesity: a systematic review and meta-analysis with evidence from up to 331 175 individuals. Human Molecular Genetics. 2015;24(12):3582-3594. doi:10.1093/hmg/ddv097.
Nead KT, Li A, Wehner MR, et al. Contribution of common non-synonymous variants in PCSK1 to body mass index variation and risk of obesity: a systematic review and meta-analysis with evidence from up to 331 175 individuals. Human Molecular Genetics. 2015;24(12):3582-3594. doi:10.1093/hmg/ddv097.
Kaufman J, Gallo WT, Fahs MC. The contribution of dementia to the disparity in family wealth between black and non-black Americans. Ageing and Society. 2020;40(2):306-327. doi:10.1017/S0144686X18000934.