HRS Bibliography

Bibliography Search
Export 568 results:
Filters: First Letter Of Last Name is V  [Clear All Filters]

2019

Brazel DM, Jiang Y, Hughey JM, et al. Exome Chip Meta-analysis Fine Maps Causal Variants and Elucidates the Genetic Architecture of Rare Coding Variants in Smoking and Alcohol Use. Biological Psychiatry. 2019;85(11):946-955. doi:10.1016/j.biopsych.2018.11.024.
Brazel DM, Jiang Y, Hughey JM, et al. Exome Chip Meta-analysis Fine Maps Causal Variants and Elucidates the Genetic Architecture of Rare Coding Variants in Smoking and Alcohol Use. Biological Psychiatry. 2019;85(11):946-955. doi:10.1016/j.biopsych.2018.11.024.
Sathyan S, Wang T, Ayers E, Verghese J. Genetic basis of motoric cognitive risk syndrome in the Health and Retirement Study. Neurology. 2019;92(13):e1427-e1434. doi:10.1212/WNL.0000000000007141.
http://www.ncbi.nlm.nih.gov/pubmed/30737336?dopt=Abstract
Boulifard DA, Ayers E, Verghese J. Home-based gait speed assessment: Normative data and racial/ethnic correlates among older adults. Journal of the American Medical Directors Association. 2019. doi:10.1016/j.jamda.2019.06.002.
http://www.ncbi.nlm.nih.gov/pubmed/31395494?dopt=Abstract
Thyagarajan B, Shippee N, Parsons H, et al. How Does Subjective Age Get “Under the Skin”? The Association Between Biomarkers and Feeling Older or Younger Than One’s Age: The Health and Retirement Study. Innovation in Aging. 2019;3(4):igz035. doi:10.1093/geroni/igz035.
Van Dam A. How these grandparents became America’s unofficial social safety net. The Washington Post. https://www.washingtonpost.com/us-policy/2019/03/23/how-these-grandparents-became-americas-unofficial-social-safety-net/?utm_term=.3cafc8231380. Published 2019.
McGrath RP, Clark BC, Erlandson KM, et al. Impairments in Individual Autonomous Living Tasks and Time to Self-Care Disability in Middle-Aged and Older Adults. Journal of the American Medical Directors Association. 2019;20:730-735. doi:10.1016/j.jamda.2018.10.014.
Vable AM, Gilsanz P, Kawachi I. Is it possible to overcome the 'long arm' of childhood socioeconomic disadvantage through upward socioeconomic mobility?. Journal of Public Health (Oxf). 2019. doi:10.1093/pubmed/fdz018.
http://www.ncbi.nlm.nih.gov/pubmed/30811528?dopt=Abstract
J. Snider T, Sullivan J, van Eijndhoven E, et al. Lifetime benefits of early detection and treatment of diabetic kidney disease. PLoS One. 2019;14(5):e0217487. doi:10.1371/journal.pone.0217487.
http://www.ncbi.nlm.nih.gov/pubmed/31150444?dopt=Abstract
McGrath RP, Vincent B, Hackney KJ, Robinson-Lane SG, Downer B, Clark BC. The Longitudinal Associations of Handgrip Strength and Cognitive Function in Aging Americans. Journal of the American Medical Directors Association. 2019. doi:https://doi.org/10.1016/j.jamda.2019.08.032.
Kim ES, VanderWeele TJ. Mediators of the association between religious service attendance and mortality. American Journal of Epidemiology. 2019;188(1):96-101. doi:10.1093/aje/kwy211.
http://www.ncbi.nlm.nih.gov/pubmed/30265277?dopt=Abstract
Deelen J, Evans DS, Arking DE, et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nature Communications. 2019;10(1):3669. doi:10.1038/s41467-019-11558-2.
http://www.ncbi.nlm.nih.gov/pubmed/31413261?dopt=Abstract
Deelen J, Evans DS, Arking DE, et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nature Communications. 2019;10(1):3669. doi:10.1038/s41467-019-11558-2.
http://www.ncbi.nlm.nih.gov/pubmed/31413261?dopt=Abstract
Deelen J, Evans DS, Arking DE, et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nature Communications. 2019;10(1):3669. doi:10.1038/s41467-019-11558-2.
http://www.ncbi.nlm.nih.gov/pubmed/31413261?dopt=Abstract
Deelen J, Evans DS, Arking DE, et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nature Communications. 2019;10(1):3669. doi:10.1038/s41467-019-11558-2.
http://www.ncbi.nlm.nih.gov/pubmed/31413261?dopt=Abstract
Deelen J, Evans DS, Arking DE, et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nature Communications. 2019;10(1):3669. doi:10.1038/s41467-019-11558-2.
http://www.ncbi.nlm.nih.gov/pubmed/31413261?dopt=Abstract
Deelen J, Evans DS, Arking DE, et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nature Communications. 2019;10(1):3669. doi:10.1038/s41467-019-11558-2.
http://www.ncbi.nlm.nih.gov/pubmed/31413261?dopt=Abstract
Kilpeläinen TO, Bentley AR, Noordam R, et al. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nature Communications. 2019;10(1):376. doi:10.1038/s41467-018-08008-w.
Kilpeläinen TO, Bentley AR, Noordam R, et al. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nature Communications. 2019;10(1):376. doi:10.1038/s41467-018-08008-w.
Kilpeläinen TO, Bentley AR, Noordam R, et al. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nature Communications. 2019;10(1):376. doi:10.1038/s41467-018-08008-w.
Kilpeläinen TO, Bentley AR, Noordam R, et al. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nature Communications. 2019;10(1):376. doi:10.1038/s41467-018-08008-w.
Kilpeläinen TO, Bentley AR, Noordam R, et al. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nature Communications. 2019;10(1):376. doi:10.1038/s41467-018-08008-w.
Kilpeläinen TO, Bentley AR, Noordam R, et al. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nature Communications. 2019;10(1):376. doi:10.1038/s41467-018-08008-w.
Kilpeläinen TO, Bentley AR, Noordam R, et al. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nature Communications. 2019;10(1):376. doi:10.1038/s41467-018-08008-w.
Kilpeläinen TO, Bentley AR, Noordam R, et al. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nature Communications. 2019;10(1):376. doi:10.1038/s41467-018-08008-w.