HRS Bibliography

Bibliography Search
Export 668 results:
Filters: First Letter Of Last Name is M  [Clear All Filters]

M

McAninch EA, Rajan KB, Jo S, Chaker L, al. et. A Common DIO2 Polymorphism and Alzheimer Disease Dementia in African and European Americans. Journal of Endocrinology & Metabolism. 2018;103(5):118-1826.
McArdle JJ, Fisher GG, Kadlec KM. Latent variable analyses of age trends of cognition in the Health and Retirement Study, 1992-2004. Psychol Aging. 2007;22(3):525-545. doi:10.1037/0882-7974.22.3.525.
http://www.ncbi.nlm.nih.gov/pubmed/17874952?dopt=Abstract
McArdle JJ, Prescott CA. Contemporary Modeling of Gene × Environment Effects in Randomized Multivariate Longitudinal Studies. Perspect Psychol Sci. 2010;5(5):606-21. doi:10.1177/1745691610383510.
http://www.ncbi.nlm.nih.gov/pubmed/22472970?dopt=Abstract
McArdle JJ, Willis RJ. Cognitive Aging and Human Capital. University of Michigan; 2011.
McArdle JJ, McArdle JJ, Ritschard G. Adaptive Testing of the Number Series Test Using Standard Approaches and a New Decision Tree Analysis Approach. In: Contemporary Issues in Exploratory Data Mining in the Behavioral Sciences. 1st Editionst ed. Contemporary Issues in Exploratory Data Mining in the Behavioral Sciences. New York, NY: Routledge; 2013. doi:https://doi.org/10.4324/9780203403020.
eBook ISBN9780203403020
McArdle JJ. Contemporary Challenges of Longitudinal Measurement Using HRS Data. In: Walford G, Tucker E, Viswanathan M, eds. The Sage Handbook of Measurement. The Sage Handbook of Measurement. London: Sage Publications; 2009. doi:https://dx.doi.org/10.4135/9781446268230.n26.
McArdle JJ. Adaptive Testing of the Number Series Test Using Standard Approaches and a New Classification and Regression Tree Approach. The Woodcock Munoz Research Foundation Journal. 2009;1.
McArdle JJ, Smith JP, Willis RJ. Cognition and Economic Outcomes. In: Wise DA, ed. Explorations in the Economics of Aging. Explorations in the Economics of Aging. Chicago: University of Chicago Press; 2011.
McArdle JJ. Longitudinal Dynamic Analyses of Cognition in the Health and Retirement Study Panel. Adv Stat Anal. 2011;95(4):453-480. doi:10.1007/s10182-011-0168-z.
http://www.ncbi.nlm.nih.gov/pubmed/25598848?dopt=Abstract
McCammon RJ, Fisher GG, Hassan H, Faul J, Rogers W, Weir DR. Health and Retirement Study Imputation of Cognitive Functioning Measures: 1992-2018. Ann Arbor, Michigan: Survey Research Center, University of Michigan; 2022.PDF icon Download PDF  (1.42 MB)
McCarthy MJ, Huguet N, Newsom JT, Kaplan MS, McFarland B. Predictors of Smoking Patterns After First Stroke. Social Work in Health Care. 2013;52(5):467.
McCarthy EP, Chang C-H, Tilton N, Kabeto MU, Langa KM, Bynum JPW. Validation of Claims Algorithms to Identify Alzheimer's Disease and Related Dementias. The Journals of Gerontology, Series A . 2022;77(6):1261-1271. doi:10.1093/gerona/glab373.
McCarthy E. COVID-19 Didn’t Change Older Americans’ Retirement Expectations: Study.
McCarthy E. Underestimating Longevity Risk.
McCarthy M. Penn study: Black older Americans age faster than white counterparts, related to structural inequalities.
McCarty R. Stress and Diabetes. In: Stress, Health, and Behavior. 1st ed. Stress, Health, and Behavior. Guilford Publications; 2023:154-171.
McCarty R. Systemic Racism as a Stressor. In: Stress, Health, and Behavior. 1st ed. Stress, Health, and Behavior. Guilford Publications; 2023:236-258.
McClain CA, Ofstedal MBeth, Couper MP. Measuring Cognition in a Multi-mode Context. Ann Arbor, MI: Survey Research Center, Institute for Social Research, University of Michigan; 2018:1-48.PDF icon Download PDF (411.01 KB)
McClellan M. Health Events, Health Insurance and Labor Supply: Evidence from the Health and Retirement Survey. In: Wise DA, ed. Frontiers in the Economics of Aging. Frontiers in the Economics of Aging. Chicago, IL: Univ. of Chicago Press; 1998.
McCluney CL, Schmitz LL, Hicken MT, Sonnega A. Structural racism in the workplace: Does perception matter for health inequalities?. Social Science & Medicine. 2018;199:106-114. doi:10.1016/j.socscimed.2017.05.039.
McCrory C, McLoughlin S, Layte R, et al. Towards a consensus definition of allostatic load: a multi-cohort, multi-system, multi-biomarker individual participant data (IPD) meta-analysis. Psychoneuroendocrinology. 2023;153:106117. doi:10.1016/j.psyneuen.2023.106117.
McDade TW, Williams S, J Snodgrass J. What a drop can do: dried blood spots as a minimally invasive method for integrating biomarkers into population-based research. Demography. 2007;44(4):899-925. doi:10.1353/dem.2007.0038.
http://www.ncbi.nlm.nih.gov/pubmed/18232218?dopt=Abstract
McDade TW. The State and Future of Blood-Based Biomarkers in the Health and Retirement Study. Forum for Health Economics and Policy. 2011;14:1-5. doi:10.2202/1558-9544.1263.
McDaniel JT, Hascup ER, Hascup KN, et al. Psychological Resilience and Cognitive Function Among Older Military Veterans. Gerontology and Geriatric Medicine. 2022;8:23337214221081363. doi:10.1177/23337214221081363.
McDonald Z. Factors Contributing to Job Satisfaction. 2022;M.S. .