HRS Bibliography

Bibliography Search
Export 48 results:
Filters: Author is Jessica D Faul  [Clear All Filters]

2016

Dunn EC, Wiste A, Radmanesh F, et al. GENOME-WIDE ASSOCIATION STUDY (GWAS) AND GENOME-WIDE BY ENVIRONMENT INTERACTION STUDY (GWEIS) OF DEPRESSIVE SYMPTOMS IN AFRICAN AMERICAN AND HISPANIC/LATINA WOMEN. Depress Anxiety. 2016;33(4):265-80. doi:10.1002/da.22484.
http://www.ncbi.nlm.nih.gov/pubmed/27038408?dopt=Abstract
Okbay A, Beauchamp JP, Fontana MAlan, et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature. 2016;533(7604):539-42. doi:10.1038/nature17671.
http://www.ncbi.nlm.nih.gov/pubmed/27225129?dopt=Abstract
Matteini AM, Tanaka T, Karasik D, et al. GWAS analysis of handgrip and lower body strength in older adults in the CHARGE consortium. Aging Cell. 2016;15(5):792-800. doi:10.1111/acel.12468.
http://www.ncbi.nlm.nih.gov/pubmed/27325353?dopt=Abstract
Liu C, Kraja AT, Smith JA, Morrison AC, et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat Genet. 2016;48(10):1162-70. doi:10.1038/ng.3660.
Weiss A, Baselmans BML, Hofer E, et al. Personality Polygenes, Positive Affect, and Life Satisfaction. Twin Res Hum Genet. 2016;19(5):407-17. doi:10.1017/thg.2016.65.
Demirkan A, Lahti J, Direk N, et al. Somatic, positive and negative domains of the Center for Epidemiological Studies Depression (CES-D) scale: a meta-analysis of genome-wide association studies. Psychol Med. 2016;46(8):1613-23. doi:10.1017/S0033291715002081.
http://www.ncbi.nlm.nih.gov/pubmed/26997408?dopt=Abstract

2015

Nead KT, Li A, Wehner MR, et al. Contribution of common non-synonymous variants in PCSK1 to body mass index variation and risk of obesity: a systematic review and meta-analysis with evidence from up to 331 175 individuals. Hum Mol Genet. 2015;24(12):3582-94. doi:10.1093/hmg/ddv097.
http://www.ncbi.nlm.nih.gov/pubmed/25784503?dopt=Abstract
Joshi PK, Esko T, Mattsson H, et al. Directional dominance on stature and cognition in diverse human populations. Nature. 2015;523(7561):459-62. doi:10.1038/nature14618.
http://www.ncbi.nlm.nih.gov/pubmed/26131930?dopt=Abstract
Crimmins EM, Faul JD, Kim JKi, Weir DR. Documentation of Biomarkers in the 2010 and 2012 Health and Retirement Study. Ann Arbor, Michigan: Survey Research Center, University of Michigan; 2015:15.PDF icon Download PDF (198.27 KB)
Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197-206. doi:10.1038/nature14177.
http://www.ncbi.nlm.nih.gov/pubmed/25673413?dopt=Abstract
Broer L, Buchman AS, Deelen J, et al. GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. J Gerontol A Biol Sci Med Sci. 2015;70(1):110-8. doi:10.1093/gerona/glu166.
http://www.ncbi.nlm.nih.gov/pubmed/25199915?dopt=Abstract
Day FR, Ruth KS, Thompson DJ, et al. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat Genet. 2015;47(11):1294-303. doi:10.1038/ng.3412.
http://www.ncbi.nlm.nih.gov/pubmed/26414677?dopt=Abstract

2014

Sonnega A, Faul JD, Ofstedal MBeth, Langa KM, Phillips JWR, Weir DR. Cohort Profile: the Health and Retirement Study (HRS). Int J Epidemiol. 2014;43(2):576-85. doi:10.1093/ije/dyu067.
http://www.ncbi.nlm.nih.gov/pubmed/24671021?dopt=Abstract
PDF icon Download PDF (288.38 KB)
Bihlmeyer NA, Brody JA, Smith AVernon, et al. Genetic diversity is a predictor of mortality in humans. BMC Genet. 2014;15:159. doi:10.1186/s12863-014-0159-7.
http://www.ncbi.nlm.nih.gov/pubmed/25543667?dopt=Abstract
Fisher GG, Stachowski A, Infurna FJ, Faul JD, Grosch J, Tetrick LE. Mental work demands, retirement, and longitudinal trajectories of cognitive functioning. J Occup Health Psychol. 2014;19(2):231-42. doi:10.1037/a0035724.
http://www.ncbi.nlm.nih.gov/pubmed/24635733?dopt=Abstract
Crimmins EM, Kim JKi, McCreath H, Faul JD, Weir DR, Seeman T. Validation of blood-based assays using dried blood spots for use in large population studies. Biodemography Soc Biol. 2014;60(1):38-48. doi:10.1080/19485565.2014.901885.
http://www.ncbi.nlm.nih.gov/pubmed/24784986?dopt=Abstract

2013

Crimmins EM, Faul JD, Kim JKi, et al. Documentation of Biomarkers in the 2006 and 2008 Health and Retirement Study. Ann Arbor, Michigan: Institute for Social Research, University of Michigan; 2013.PDF icon Download PDF (364.89 KB)
Franceschini N, Fox E, Zhang Z, et al. Genome-wide association analysis of blood-pressure traits in African-ancestry individuals reveals common associated genes in African and non-African populations. Am J Hum Genet. 2013;93(3):545-54. doi:10.1016/j.ajhg.2013.07.010.
http://www.ncbi.nlm.nih.gov/pubmed/23972371?dopt=Abstract
Rietveld CA, Medland SE, Derringer J, et al. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science. 2013;340(6139):1467-71. doi:10.1126/science.1235488.
http://www.ncbi.nlm.nih.gov/pubmed/23722424?dopt=Abstract

2011

Weir DR, Faul JD, Langa KM. Proxy interviews and bias in the distribution of cognitive abilities due to non-response in longitudinal studies: a comparison of HRS and ELSA. Longit Life Course Stud. 2011;2(2):170-184. doi:10.14301/llcs.v2i2.116.
http://www.ncbi.nlm.nih.gov/pubmed/25360159?dopt=Abstract

2005

Fisher GG, Faul JD, Weir DR, Wallace RB. Documentation of Chronic Disease Measures in the Health and Retirement Study. Ann Arbor, Michigan: Institute for Social Research, University of Michigan; 2005.PDF icon Download PDF (460.3 KB)