HRS Bibliography

Bibliography Search
Export 393 results:
Filters: First Letter Of Title is M  [Clear All Filters]

M

Clouston SAP, Denier N. Mental retirement and health selection: Analyses from the U.S. Health and Retirement Study. Social Science & Medicine. 2017;178:78-86. doi:10.1016/j.socscimed.2017.01.019.
Bingley P, Martinello A. Mental retirement and schooling. European Economic Review. 2013;63(October 2013):292-298. doi:http://dx.doi.org/10.1016/j.euroecorev.2013.01.004.
Fisher GG, Stachowski A, Infurna FJ, Faul J, Grosch J, Tetrick LE. Mental work demands, retirement, and longitudinal trajectories of cognitive functioning. J Occup Health Psychol. 2014;19(2):231-42. doi:10.1037/a0035724.
http://www.ncbi.nlm.nih.gov/pubmed/24635733?dopt=Abstract
Liu C, Kraja AT, Smith JA, Morrison AC, et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat Genet. 2016;48(10):1162-70. doi:10.1038/ng.3660.
Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Human Molecular Genetics. 2018;27(20):3641-3649. doi:10.1093/hmg/ddy271.
Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Human Molecular Genetics. 2018;27(20):3641-3649. doi:10.1093/hmg/ddy271.
http://www.ncbi.nlm.nih.gov/pubmed/30124842?dopt=Abstract
Deelen J, Evans DS, Arking DE, et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nature Communications. 2019;10(1):3669. doi:10.1038/s41467-019-11558-2.
http://www.ncbi.nlm.nih.gov/pubmed/31413261?dopt=Abstract
A Erzurumluoglu M, Liu M, Jackson VE, et al. Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci. Molecular Psychiatry. 2020;25(10):2392-2409. doi:10.1038/s41380-018-0313-0.
Tweedy MP. Metabolic Syndrome and Psychosocial Factors. 2009.
Pare G, Mao S, Deng WQ. A method to estimate the contribution of regional genetic associations to complex traits from summary association statistics. Sci Rep. 2016;6:27644. doi:10.1038/srep27644.
http://www.ncbi.nlm.nih.gov/pubmed/27273519?dopt=Abstract
Lee S, Smith J. Methodological Aspects of Subjective Life Expectancy: Effects of Culture-Specific Reporting Heterogeneity Among Older Adults in the United States. The Journals of Gerontology: Series B. 2016;71(3):558-568. doi:10.1093/geronb/gbv048.
Hurd MD, Rohwedder S. Methodological Innovations in Collecting Spending Data: The HRS Consumption and Activities Mail Survey. Fisc Stud. 2009;30(3-4):435-459. doi:10.1111/j.1475-5890.2009.00103.x.
http://www.ncbi.nlm.nih.gov/pubmed/21052480?dopt=Abstract
Times TNew York, News KFFHealth. Methodology for Analysis of the U.S. Health and Retirement Study. Dying Broke.
Briceño E, Mehdipanah R, Gonzales X, et al. Methods and Early Recruitment of a Community-Based Study of Cognitive Impairment Among Mexican Americans and Non-Hispanic Whites: The BASIC-Cognitive Study. Journal of Alzheimer's Disease. 2020;73(1):185-196. doi:10.3233/JAD-190761.
Chikomba A, Goulding A, Sanderson L, Sylvester A, Campbell-Meier J. Methods and (Lack of) Theory in Digital Inclusion, Digital Divide, and Digital Equity Research on Older Adults. Wellington, New Zealand: Victoria University of Wellington; 2023:1869.
United States Congressional Office. Methods for Analysis of the Financing and Use of Long-Term Services and Supports. Washington, DC; 2013.
Imbriano P. Methods for Improving Efficiency of Planned Missing Data Designs. Biostatistics. 2018;PhD:110.
Qiao Z, Powell J. MHC-Dependent Mate Selection within 872 Spousal Pairs of European Ancestry from the Health and Retirement Study. Genes. 2018;9(2):53. doi:10.3390/genes9010053.
Benítez-Silva H. Micro Determinants of Labor Force Status Among Older Americans. SUNY-Stony Brook; 2000.
Burkhauser RV, Smeeding TM. Microdata Panel Data and Public Policy: National and Cross-National Perspectives. Syracuse, NY: Syracuse University; 2000.
Reed E. The Microeconomic Effect of Longevity on Savings: Evidence from the Health and Retirement Study. 2005.
Quinn JF, Burkhauser RV, Cahill KE, Weathers, II RR. The Microeconomics of the Retirement Decision in the United States.; 1998.
Cahill KE, Giandrea MD, Quinn JF. A Micro-Level Analysis of Recent Increases in Labor Force Participation Among Older Workers. Boston: Center for Retirement Research at Boston College; 2008.
Laditka SB, Laditka JN, Jagger C. Microsimulation of Health Expectancies, Life Course Health, and Health Policy Outcomes. In: Jagger C, Crimmins EM, Saito Y, Yokota RTiene De C, Van Oyen H, Robine J-M, eds. International Handbooks of Population: International Handbook of Health Expectancies. Vol. 9. International Handbooks of Population: International Handbook of Health Expectancies. Basel: Springer International Publishing; 2020:129–138. doi:10.1007/978-3-030-37668-0_9.
B. Huber R. Middle-aged Americans report more pain than the elderly. Research News.