
BULLETIN of the
MALAYSIAN MATHEMATICAL

SCIENCES SOCIETY

http://math.usm.my/bulletin

Bull. Malays. Math. Sci. Soc. (2) 35(4) (2012), 845–858

A Bivariate Binary Model for Testing Dependence in Outcomes

1M. ATAHARUL ISLAM, 2RAFIQUL I CHOWDHURY AND 3LAURENT BRIOLLAIS
1Department of Statistics and OR, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia

2Department of Epidemiology and Biostatistics, University of Western Ontario, Canada
3Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada

1mataharul@yahoo.com, 2mchowd23@uwo.ca, 3laurent@lunenfeld.ca

Abstract. The problem of dependence in the outcome variables has become an increasingly
important issue of concern during the past two decades attributable mainly to the increase
in the demand for techniques in analyzing repeated measures data. In the past, most of
the longitudinal models developed are based on marginal approaches and relatively few
are based on conditional models. The joint models are examined mainly to focus on the
characterization problems but not much has been employed to focus the covariate dependent
models with dependence in the outcomes. This paper develops a new simple procedure to
take account of the bivariate binary model with covariate dependence. The model is based on
the integration of conditional and marginal models. Test procedures are suggested for testing
the dependence in binary outcomes. Simulations are employed to demonstrate the utility of
the proposed test procedures in different dependence settings. Finally, an application to the
depression data has been shown. All the results confirm that the proposed model for testing
the dependence in outcomes can be applied very successfully for a wide variety of situations.
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1. Introduction

The Bernoulli distribution has a very important role and is connected with univariate distri-
butions such as binomial, geometric, negative binomial, Poisson, gamma, hypergeometric,
exponential, normal etc. either as a limit or as a sum or other functions. In the univariate
case, there is a family of interrelated distributions. Marshall and Olkin [27] demonstrated
that some distributions arise naturally from bivariate Bernoulli distribution as well. At an
earlier time, Antelman [1] also suggested some interrelated Bernoulli processes.

The importance of the bivariate, or more specifically, multivariate Bernoulli has in-
creased since the introduction of the generalized linear models [28], and more so, after
the extension for repeated measures since the work of Zeger and Liang [40] was published
on the generalized estimating equation (GEE). In the simplest case, we may assume that
the marginal variables are also independent for each subject. Then the analysis reduces to
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a standard generalized linear model [28, 29]. In longitudinal studies, we need to deal with
repeated binary outcomes which are correlated. Liang and Zeger [21] and Prentice [33]
proposed the GEE models based on probability of the event and correlations or the first and
the second moments. On the other hand, Lipsitz et al. [24], Liang et al. [22] and Carey et
al. [8] employed the marginal odds ratios, instead of correlations between pairs of binary
responses [14]. Cessie and Houwelingen [9] proposed use of different measures of depen-
dence in modeling for logistic regression for correlated binary data. A marginal model of
multivariate categorical data was proposed by Molenberghs and Lesaffre [30]. These mar-
ginal models may fail to provide efficient estimation of parameters due to lack of proper
specification of the dependence of binary outcomes in the model. Azzalini [2] proposed a
marginal model based on binary Markov Chain for a single stationary process (Y1, . . . ,YT )
where Y ’s take values of 0 or 1 at subsequent times.

The quadratic exponential form model has been proposed on the basis of the Bahadur
representation [3]. Cox [10] showed that the multivariate binary probability can be ex-
plained by a quadratic exponential form by employing the logistic regression model. This
was further studied by Zhao and Prentice [41], Cox and Wermuth [11] and Lee and Jun [25].
A generalized multivariate logistic model was proposed by Glonek and McCullagh [15] and
Glonek [16]. A marginal modeling of correlated data was proposed by Molenberghs and
Lesaffre [31] using a multivariate Plackett distribution. In their model, they considered three
link functions for marginal and association parameters. This approach has been studied in
the setting of log-linear models [4, 5, 34]. Wakefield [38] summarizes the limitation of the
marginal models with specific reference to the well known Simpson’s paradox [35]. Some
of the recent expositions of the bivariate and multivariate Bernoulli approaches include Juan
and Vidal [19], Lin and Clayton [23], Lovison [26], Sun et al. [36], Yee and Dronbock [39]
and Lee and Jun [25]. The conditional approach was shown by Bonney [6, 7], Muenz and
Rubinstein [32], Islam and Chowdhury [17], and Islam et al. [18]. Bonney’s regressive
model approach takes previous outcome into account in addition to covariates. This model
also fails to address the dependence in the binary outcomes unconditionally. Darlington
and Farewell [13] proposed two approaches for analyzing longitudinal data with correla-
tion as a function of explanatory variables. They pointed out that the relationship between
outcome and explanatory variables may also depend on the dependence in outcomes and
explanatory variables. According to Darlington and Farewell, the models are designed to
focus on the marginal probability along with the dependence of correlation structure on ex-
planatory variables. At this backdrop, we propose a new model based on both the marginal
and conditional probabilities of the correlated binary events such that the joint function can
be specified fully by unifying the marginal and conditional probabilities. In the proposed
model, both the marginal and conditional probabilities are expressed as a function of ex-
planatory variables and a test for dependence in outcomes is proposed.

2. Bivariate Bernoulli

Let us consider outcomes Yj−1 and Yj at time points t j−1 and t j respectively. If we consider,
j = 2, then the bivariate probabilities are
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Y2
Y1 0 1 Total
0 P00 = P(Y2 = 0,Y1 = 0) P01 = P(Y2 = 1,Y1 = 0) P(Y1 = 0)
1 P10 = P(Y2 = 0,Y1 = 1) P11 = P(Y2 = 1,Y1 = 1) P(Y1 = 1)

1

The bivariate probability mass function for Y1 and Y2 can be shown as:

(2.1) P(y1,y2) = P(1−y1)(1−y2)
00 P(1−y1)y2

01 Py1(1−y2)
10 Py1y2

11 =
1

∏
j=0

1

∏
k=0

P
y jk
jk

where

y00 = (1− y1)(1− y2), j = 0,k = 0

y01 = (1− y1)y2, j = 0,k = 1

y10 = y1(1− y2), j = 1,k = 0
y11 = y1y2, j = 1,k = 1.

The joint probabilities can be expressed in terms of conditional and marginal probabilities
as follows:

P(Y1 = 0,Y2 = 1) = P(Y2 = 1 |Y1 = 0 )P(Y1 = 0),

P(Y1 = 0,Y2 = 0) = P(Y2 = 0 |Y1 = 0 )P(Y1 = 0),

P(Y1 = 1,Y2 = 1) = P(Y2 = 1 |Y1 = 1 )P(Y1 = 1),

P(Y1 = 1,Y2 = 0) = P(Y2 = 0 |Y1 = 1 )P(Y1 = 1).

Using these relationships in the joint probability function, we obtain

(2.2) P(y1,y2) =
1

∏
j=0

1

∏
k=0

[P(Y2 = k |Y1 = j )P(Y1 = j)]y jk

Now, the conditional probabilities can be shown as follows:

Y2
Y1 0 1 Total
0 π00 π01 1
1 π10 π11 1

The bivariate probability mass function can be obtained from conditional and marginal
probability functions as displayed below:

(2.3) P(y1,y2) =
1

∏
j=0

1

∏
k=0

[π jkP(Y1 = j)]y jk

Let

γ01 = [γ010,γ011, . . . ,γ01p],

γ11 = [γ110,γ111, . . . ,γ11p],

γ1+ = [γ1+0,γ1+1, . . . ,γ1+p],
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γ+1 = [γ+10,γ+11, . . . ,γ+1p],

X′i = [1,X1i, . . . ,Xpi].

The first order transition model can be expressed as function of covariates as shown below:

(2.4) π01i(Xi) = P(Y2i = 1 |Y1i = 0,Xi ) =
eγ01Xi

1+ eγ01Xi

and

(2.5) π11i(Xi) = P(Y2i = 1 |Y1i = 1,Xi ) =
eγ11Xi

1+ eγ11Xi
.

These can be expressed as logit functions as follows:

logit[π01i(Xi)] = γ01Xi, and logit[π11i(Xi)] = γ11Xi.

These are new models for revealing the nature of dependence in the outcome variables Y1and
Y2in the presence of covariates. It can be shown that under independence of Y1and Y2, the
conditional models in the presence of covariates, (2.4) and (2.5), are equal (i.e. γ01= γ11).
Here, it is noteworthy that γ01 and γ11 are the parameters of the conditional logit models for
given covariates X and Y1 = 0 and Y1 = 1, respectively. The covariates are assumed to be
time independent for this model.

The marginal probabilities for Y1 and Y2 are:

π1+i = P(Y1i = 1 |Xi ) =
eγ1+Xi

1+ eγ1+Xi
= P1+i(Xi),(2.6)

π+1i(Xi) = P(Y2i = 1 |Xi ) =
eγ+1Xi

1+ eγ+1Xi
= P+1i(Xi).(2.7)

It is evident that under independence of Y1 and Y2 , the conditional probabilities (2.4) and
(2.5) can be shown as equal to the marginal probability of Y2 in equation (2.7). This provides
the basis for a new model for two dependent binary variables in the presence of covariates
where independence is a special case for γ01= γ11.

It is noteworthy that Darlington and Farewell [13] proposed a transition probability
model based on the following logit functions with marginal specification:

π11i(Xi) = P(Y2i = 1 |Y1i = 1,Xi ) =
eγ11Xi

1+ eγ11Xi

and

π+1i(Xi) = P(Y2i = 1 |Xi ) =
eγ+1Xi

1+ eγ+1Xi
= P+1i(Xi).

They have not considered transition probability π01i(Xi) in their model. Darlington and
Farewell observed that there is asymmetry in this section and may not be suitable for all
applications. Thus the method proposed by Darlington and Farewell can be shown as a
special case of the new model where equality of conditional probability (2.5) and marginal
probability (2.7) can be employed for testing for independence. In that case, γ11 = γ+1,
in other words, the conditional probability of Y2 for the given Y1 and X and the marginal
probability of Y2 for the given X are equal if Y1 and Y2 are independent. However, equality of
models (2.4) and (2.5) reveals this more explicitly due to underlying conditional dependence
on X for conditional models of Y2 for the given values of Y1 .
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Then the likelihood function is

L =
n

∏
i=0

1

∏
j=0

1

∏
k=0

[
π jki(Xi)P(Y1i = j |Xi)

]y jkl

=
n

∏
i=1

[{
eγ01Xi

1+ eγ01Xi

}y01i{ 1
1+ eγ01Xi

}y00i
{

eγ11Xi

1+ eγ11Xi

}y11i{ 1
1+ eγ11Xi

}y10i

×
{

eγ1+Xi

1+ eγ1+Xi

}y1+i{ 1
1+ eγ1+Xi

}y0+i
]

(2.8)

where

∑
k

Yjki = Yj+i, ∑
j
∑
k

Yjki = 1, ∑
i

∑
j
∑
k

Yjki = n, ∑
i

∑
k

Yjki = n j, ∑
i

Yjki = n jk;

j = 0,1; k = 0,1; i = 1,2, . . . ,n.

Hence the log likelihood function can be obtained as follows:

lnL =∑
i

[{
y01iγ01Xi− y00i ln(1+ eγ01Xi)

}
+
{

y11iγ11Xi− y10i ln(1+ eγ11Xi)
}]

(2.9)

+∑
i

[{
y1+iγ1+Xi− (y1+i + y0+i) ln(1+ eγ1+Xi)

}]
.

Differentiating (2.9) with respect to parameters, we obtain the following score functions:

∂ lnL
∂γ j1l

= 0, j = 0,1, l = 0,1,2, . . . , p

and
∂ lnL
∂γ1+l

= 0, l = 0,1,2, . . . , p

and we obtain the estimates γ̂ j1l and γ̂1+l , l = 0,1, . . . , p, by solving the above equations
iteratively. The elements of variance-covariance matrix can be obtained from the observed
information matrix as

− ∂ 2 lnL
∂γ j1l∂γ j1l′

j = 0,1; l, l′ = 0,1, . . . , p

and

− ∂ 2 lnL
∂γ1+l∂γ1+l′

, l, l′ = 0,1, . . . , p.

3. Measure of dependence

For bivariate Bernoulli variates, cov(Y1,Y2) = σ12 = P11P00−P10P01, hence, the correlation
is

(3.1) ρ =
P11P00−P10P01√

P0+P1+P+0P+1

as shown by Marshall and Olkin [27] and the empirical estimator is:

ρ̂ =
P̂11 P̂00− P̂10 P̂01√

P̂0+ P̂1+ P̂+0 P̂+1
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where P(Y1 = j,Y2 = k) = Pjk, j = 0,1;k = 0,1 and Pj+or P+k are the marginal probabilities,
P̂jk, P̂j+ and P̂+k are the corresponding estimators. The correlation coefficient, ρ = 0 (de-
noted as ρMO in the tables) will indicate no association between Y1 and Y2. In other words,
P11P00−P01P10 = 0 can also be examined from the odds ratio, ψ = (P11P00/P01P10) = 1. If
we define

E(Y1) = µ1 = P1+, E(Y2) = µ2 = P+1, E(Y1Y2) = σ12 +P1+P+1,

then it is evident that σ12 = 0 indicates independence of the two binary outcomes as demon-
strated by Teugels [37] and obtained a measure of correlation coefficient similar to (3.1).

Following Dale [12], the joint probability P11 for correlated binary variables can be ex-
pressed as [9]:

P11 =

{
1/2(ψ−1)−1{1+(P1+ +P+1)(ψ−1)−S(P1+,P+1,ψ)}, if ψ 6= 1
P1+P+1, if ψ = 1

where

S(P1+,P+1,ψ) =
√

[{1+(P1+ +P+1)(ψ−1)}2 +4ψ(1−ψ)P1+P+1].

Darlington and Farewell [13] proposed the following measure for correlation to examine the
dependence in outcome variables:

ρi = corr(Y1i,Y2i |Xi ) =
eγ11Xi − eγ+1Xi

1+ eγ11Xi
.

If γ11= γ+1in the above relationship, then it confirms complete independence. The moti-
vation behind this measure of correlation is very straightforward, i.e., if we need to study
the relationship between binary outcomes and a set of explanatory variables then the depen-
dence in outcomes are also dependent on the explanatory variables.

4. Test for the model

We need to test the following null hypothesis for the overall fit of the models comprising of
the conditional and marginal models as functions of explanatory variables:

H0 : γ̄H = [γ̄01, γ̄11, γ̄1+] = 0

H1 : γ̄H 6= 0

where

γ̄01 = (γ011,γ012, ...,γ01p)

γ̄11 = (γ111,γ112, ...,γ11p)

γ̄1+ = (γ1+1,γ1+2, ...,γ1+p) .

Then

(4.1) −2
[
lnL(γ̂010, γ̂110, γ̂1+0)− lnL

(
γ̂01, γ̂11, γ̂1+

)]
which is asymptotically distributed as χ2

3p. For testing

H0 : γ j1l = 0

H1 : γ j1l 6= 0
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we can use the following Wald test statistic:

(4.2) W =
γ̂ j1l

sê
(

γ̂ j1l

) .

Similarly, for testing

H0 : γ1+l = 0

H1 : γ1+l 6= 0

We can use the Wald test statistic

(4.3) W =
γ̂1+l

sê
(
γ̂1+l

) .
5. Test for dependence

A simple test procedure can be developed for the bivariate Bernoulli model proposed in
section 2. Using (2.4) and (2.5), we can obtain the odds ratio as follows:

(5.1) ψi =
π11i(Xi)/[1−π11i(Xi)]
π01i(Xi)/[1−π01i(Xi)]

=
eγ11Xi

eγ01Xi
= e(γ11−γ01)Xi

and
lnψi = (γ11−γ01)Xi.

If γ01= γ11 then ψ = 1 and lnψ = 0 indicate independence of the two binary outcomes in the
presence of covariates. Any departure from ψ = 1 will indicate the extent of dependence.
We can measure the dependence between Y1 and Y2, in terms of odds ratio, as e(γ11−γ01)1

where 1 is the column vector of 1’s for the unit difference in the values of covariates. The
null hypothesis H0 : γ01= γ11can be tested for independence in the presence of covariates
between the binary outcome variables Y1 and Y2 using the following test statistic:

(5.2) χ
2 = (γ̂01−γ̂11)

′
[
V̂ar(γ̂01−γ̂11)

]−1
(γ̂01−γ̂11)

which is distributed asymptotically as chi-square with p degrees of freedom. Here the esti-
mators, γ̂’s, are the maximum likelihood estimators based on the equations shown in section
2 by differentiating the log likelihood function (2.9) with respect to the parameters of inter-
est. We have employed this test statistic for testing dependence between Y1 and Y2.

Another alternative test can be obtained from the relationship between the conditional
and marginal probabilities for the outcome variable, Y2, as displayed in equations (2.4),
(2.5) and (2.7). It may be noted here that under independence of Y1 and Y2, in the presence
of covariates, the conditional probabilities (2.4) and (2.5) are equal and can be expressed
in terms of the marginal probability (2.7). In other words, the null hypothesis is: H0 :
γ01= γ11= γ+1. This can be tested employing the following asymptotic chi-squares for
hypotheses: H01 : γ01= γ+1 and H02 : γ11= γ+1, respectively:

(5.3) χ
2 =

(
γ̂01−γ̂+1

)′ [V̂ar(γ̂01−γ̂+1)
]−1 (

γ̂01−γ̂+1
)

(5.4) χ
2 =

(
γ̂11−γ̂+1

)′ [V̂ar(γ̂11−γ̂+1)
]−1 (

γ̂11−γ̂+1
)
.
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It is noteworthy that the measure of correlation proposed by Darlington and Farewell [13],
ie.,

ρi = corr(Y1i,Y2i |Xi ) =
eγ11Xi − eγ+1Xi

1+ eγ11Xi

can be tested by (5.4). However, it is necessary for the independence that both (5.3) and
(5.4) should support the null hypotheses H01 : γ01= γ+1 and H02 : γ11= γ+1, respectively.
Both are asymptotically chi-squares with p degrees of freedom. If one or both of (5.3) and
(5.4) show significant results then it is likely that there is dependence between Y1 and Y2.
The extent of dependence can be estimated as e(γ̂11−γ̂01)1.

6. Simulation

To generate correlated binary data for simulations, we have used technique proposed by
Leisch et al. [20] known as bindata package for R. Based on their method, data are first
generated from multivariate normal random variates and they are transformed into binary
data. We simulated three variables, two are dependent outcomes Y1 and Y2 and one is co-
variate, X . We have considered all the three variables binary for clear exposition of the
proposed tests. We have considered different combination of the correlation between the
two outcome variables and their relationship with the covariate, X . Each simulation was
performed 500 times with samples of size 250 and 500.

Table 1 displays results averaged from 500 simulations with samples of size 250 for
different correlation structures between the three variables denoted as Y1, Y2 and X . The
various dependence patterns between these variables are employed here to obtain 12 differ-
ent models for samples of size 250. Models 1, 2 and 3 show that there are no evidences of
association between Y1 and Y2 and the odds ratios are close to 1. However, the conditional
odds ratios for given X seem to deviate from 1 indicating substantial association between
dependent and independent variables. Models 4-12 display different types of associations
between Y1 and Y2 as well as between dependent variables Y1 and Y2 and X . The estimated
correlation coefficients for Y1 and Y2 based on Marshall-Olkin, and odds ratio, ψ show no
association for models 1-3 for observed data and models using logit link function. In ad-
dition, the estimated correlations employing Marshall-Olkin indicate values close to zero
for models 8 and 9. The Marshall-Olkin correlation coefficients show that the association
between Y1 and Y2 are also close to zero which other measures failed to recognize. The
test for models indicate that all the models are significant due to association between the
independent and dependent variables as shown in the conditional odds ratios.

Now if we examine the pattern of dependence based on the proposed test then models
1,2,3 and 8 (less than 5%) clearly fail to show any dependence. Model 9 shows indepen-
dence in 90% of the simulations. This is supported by their corresponding measure of
dependence by Marshall-Olkin correlation coefficient. The alternative tests based on hy-
potheses: H01 : γ01 = γ+1 and H02 : γ11 = γ+1, respectively, also reveal that the models
1,2,3,8,9 and 12 clearly fail to show any dependence.

We observe almost similar findings for samples of size 500 as displayed in Table 2 with
some minor differences although the number of increased significant cases might be attrib-
uted to the increased sample size from 250 to 500.
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Table 1. Sample Size of 250 with 500 Simulations for Obtaining the Estimates of Measures of Associations Based on Observed Data and Logistic
Regression Models

Simulation No 1 2 3 4 5 6 7 8 9 10 11 12
00 100 99 100 113 112 82 87 38 38 50 113 13
01 100 100 100 87 87 118 37 62 63 74 87 37
10 25 25 25 13 13 43 38 63 62 75 12 37
11 25 25 25 38 38 7 88 87 88 50 38 163
ψ(Y 1−Y 2) 1.041 1.056 1.085 4.244 4.238 0.123 5.668 0.877 0.873 0.461 4.315 1.571
ρ̂MO -0.002 0.000 0.006 0.251 0.250 -0.356 0.397 -0.039 -0.041 -0.198 0.253 0.067
Model χ2 20.33 36.48 59.06 4.13 43.93 36.77 65.11 245.65 3.86 106.49 105.91 4.75
# Sig. p-values 416 496 500 17 500 499 500 500 8 500 500 13
Test for Dependencies
γ01vs.γ11 2.04 1.91 2.03 14.59 17.86 19.36 20.21 1.36 2.49 14.46 4.82 3.16
# Sig. p-values 24 19 19 483 500 494 490 2 51 476 161 79
γ01vs.γ+1 0.28 0.26 0.31 1.94 2.95 2.94 6.63 0.61 1.10 5.53 1.16 1.98
# Sig. p-values 0 0 0 0 6 7 284 0 2 203 4 21
γ11vs.γ+1 1.31 1.22 1.28 10.03 12.40 13.99 7.77 0.40 0.63 5.47 2.98 0.43
# Sig. p-values 5 3 6 439 486 492 350 0 0 196 44 0
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Table 2. Sample Size of 500 with 500 Simulations for Obtaining the Estimates of Measures of Associations Based on Observed Data and Logistic
Regression Models

Simulation No 1 2 3 4 5 6 7 8 9 10 11 12
00 200 200 201 201 225 165 176 75 75 100 226 25
01 201 200 199 199 175 235 75 125 125 150 175 75
10 50 50 50 50 25 85 74 125 125 151 25 75
11 49 50 50 50 75 15 176 175 175 100 74 325
ψ(Y 1−Y 2) 1.004 1.014 1.044 1.044 4.105 0.125 5.722 0.867 0.861 0.446 4.064 1.500
ρ̂MO -0.005 -0.002 0.003 0.003 0.252 -0.350 0.405 -0.038 -0.040 -0.202 0.250 0.064
Model χ2 38.069 72.832 122.565 122.565 86.116 72.932 132.621 495.042 4.877 209.969 210.372 6.732
# Sig. p-values 496 500 500 500 500 500 500 500 31 500 500 45
Test for Dependencies
γ01vs.γ11 2.216 2.212 2.410 2.410 36.751 38.952 40.139 1.791 2.982 29.871 7.883 3.895
# Sig. p-values 30 32 41 41 500 500 500 9 66 500 305 101
γ01vs.γ+1 0.284 0.297 0.342 0.342 5.828 5.374 12.155 0.824 1.319 11.178 1.457 2.437
# Sig. p-values 0 0 0 0 218 166 489 0 4 475 8 37
γ11vs.γ+1 1.441 1.408 1.533 19.746 25.355 28.149 16.179 0.501 0.737 11.150 5.403 0.499
# Sig. p-values 8 7 9 499 500 500 500 0 0 472 191 0
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7. Application

For this study, an application is displayed in this section from the Health and Retirement
Study (HRS) data. The HRS is sponsored by the National Institute of Aging (grant number
NIA U01AG09740) and conducted by the University of Michigan. This study is conducted
nationwide for individuals over age 50 and their spouses. We have used the panel data from
the two rounds of the study conducted on individuals over age 50 years in 1992 (Wave I)
and 1994 (Wave II) and documented by RAND. We have used the panel data on depression
for the period, 1992–1994. The depression index is based on the score on the basis of the
scale proposed by the Center for Epidemiologic Studies Depression (CESD). As indicated
in the documentation of the RAND, the CESD score is computed on the basis of eight
indicators attributing depression problem. The indicators of depression problem are based
on six negative (all or most of the time: depressed, everything is an effort, sleep is restless,
felt alone, felt sad, and could not get going) and two positive indicators (felt happy, enjoyed
life). These indicators are yes/no responses of the respondent’s feelings much of the time
over the week prior to the interview. The CESD score is the sum of six negative indicators
minus two positive indicators. Hence, severity of the emotional health can be measured from
the CESD score. From the panels of data, we have used 9761 respondents for analyzing
depression among the elderly in the USA during 1992–2002.

We considered the following dependent and explanatory variables: depression status (no
depression, if CESD score = 0 then depression status = 0, depression, if CESD score > 0
then depression status = 1), gender (male = 1, female = 0), marital status (married/partnered
= 1, single/widowed/divorced = 0), ethnic group (white = 1, else 0; black = 1, else 0; oth-
ers = reference category). Table 3 displays the transition counts and transition probabilities
during 1992–94 period in Waves I and II. It is evident from the transition probabilities that
the probability of outcome status remains depression free during the period is 0.650 and
outcome status is changed from depression free to depression is 0.350. However, the prob-
ability of remaining in the state of depression during the period is 0.715. The estimated
odds ratio for depression in Waves I and II is 4.67 and the conditional odds ratios for given
X = 0 and X = 1 are 4.48 and 4.85 respectively. The Marshall-Olkin correlation coefficient
between depression status in Waves I (Y1) and II (Y2) is 0.354. This indicates a positive
correlation between the depression status in consecutive time points. The conditional and
marginal models are significant indicating association between the outcome variables and
selected covariates (using the test statistic demonstrated in equation (4.1)) and we observe
negative association between depression among elderly and gender, marital status and white
race as compared to other races. The proposed test statistic for testing equality of param-
eters of the conditional models, using the test statistic (5.2), indicates dependence in the
depression status in Waves I and II (p-value<0.01). The alternative tests based on equality
of conditional and marginal model parameters, based on the tests (5.3) and (5.4), support
this finding of dependence (p-value<0.01).
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Table 3. Transition Count and Probability Based on Consecutive Follow-ups I and II

WAVE I
WAVE II

Transition Count Transition Probability
0 1 Total 0 1 Total

0 3296 1773 5069 0.650 0.350 1.000
1 868 2179 3047 0.285 0.715 1.000

Table 4. Application Using WAVE I and WAVE II from HRS Data (Dependent Variables=CESD, 0,1+)

Conditional Models Marginal Models
Covariates γ̂01 j γ̂11 j γ̂1+ j γ̂+1 j

β̂01 j s.e p-value β̂11 j s.e p-value β̂1 j s.e p-value β̂2 j s.e p-value
Constant 0.249 0.183 0.158 1.861 0.225 0.000 0.525 0.128 0.000 1.104 0.134 0.000
Gender -0.279 0.061 0.000 -0.179 0.083 0.038 -0.080 0.048 0.098 -0.243 0.046 0.000
Marital Status -0.299 0.075 0.000 -0.525 0.093 0.000 -0.606 0.054 0.000 -0.547 0.054 0.000
White -0.591 0.177 0.002 -0.587 0.217 0.010 -0.671 0.124 0.000 -0.752 0.129 0.000
Black -0.125 0.191 0.322 -0.300 0.232 0.173 -0.144 0.134 0.222 -0.225 0.139 0.108
Model χ2 (p-value) 451.36 (0.000)

Note: ψ(Y 1−Y 2) = 4.67; ρ̂MO = 0.354; χ2 for testing γ01 vs. γ11 = 838.504(p-value <0.001);
χ2 for testing γ01 vs. γ+1 = 210.668(p-value < 0.001); χ2 for testing γ11 vs. γ+1 = 391.919(p−value < 0.001).
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8. Conclusion

The problem of dependence in the repeated measures outcomes is one of the formidable
challenges to the researchers. In the past, the problem had been resolved on the basis of
marginal models with a varied range of assumptions. The models based on GEE with var-
ious correlation structures are some examples of arbitrariness contained in the procedures.
Some attempts have been made to address this problem employing conditional models too.
However, we need to specify the bivariate or multivariate outcomes specifying the underly-
ing correlations for a more detailed and more meaningful models. This paper shows a new
model for bivariate binary data using the conditional and marginal probabilities to specify
the joint bivariate probability functions and applies the proposed estimation procedures to
real life data and simulations. Some test procedures are suggested for testing the depen-
dence of the bivariate outcomes in the presence of covariates. The numerical examples
clearly show the utility of the proposed procedures for testing dependence in the binary out-
come variables.
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