HRS 1996 Imputations: Documentation

Honggao Cao
Institute for Social Research
University of Michigan

February 2001

This document describes imputation results for HRS Wave 3 (1996) data. For questions related to the results or the documentation, contact the author or hrsquest@isr.umich.edu.

CONTENTS

I. Introduction 1
II. Rules for Variable Selections 2
III. The Bracketed and Unbracketed Problems: Examples 3
IV. Producing and Organizing Imputation Results 6
(a) Translating an Imputation Problem for IMPUTE 6
(b) The Imputation Strategies 7
(c) The Conventions Used for Organizing Imputation Results 9
(d) Post-Imputation Treatment: the " z " Variable 11
V. The Structure of "HRS96 Imputations" 14
VI. Questions and Answers 25
References 28

HRS96 Imputations: Documentation

I. Introduction

The Health and Retirement Study (HRS) is a national longitudinal survey that describes for older Americans the dynamics of economic, health, marital, and family statuses, as well as public and private support systems. A companion study to the Asset and Health Dynamics among the Oldest Old (AHEAD) ${ }^{1}$, and administered at the Institute for Social Research (ISR), the University of Michigan, HRS uses an important method to collect data that are usually subject to high rates of non-response (Heeringa, Hill, and Howell, 1995; Hill, 1999; Juster and Smith, 1998). A key feature of the method is to allow a respondent who is unwilling or unable to answer an "amount" question to provide "bracket" information about the "amount." To utilize the "bracket" information collected, one needs to unfold brackets, or impute the amount variables with brackets.

In this document we describe imputation results released in five supplemental, imputation files for HRS Wave 3 (1996) public release data: "h1996i_e," "h1996i_f," and "h1996i_j," "h1996i_n," and "h1996i_r." For simplicity, we shall call these files "HRS96 imputations." An imputation program developed at the ISR, IMPUTE, ${ }^{2}$ was used to produce the results, which include variables for imputed values, imputation controls, bracket patterns, and imputation types. Naturally, our focus is on the imputations of the amount variables with brackets; ${ }^{3}$ examples of

[^0]these variables are given in Section III. But some of the variables without brackets are also covered if they are believed to be integral components of three aggregate variables interested by many researchers: household income, housing equity, and net worth. The rules for selecting the amount variables for imputations are stated formally in Section II, while the strategies for producing and organizing imputation results are discussed in Section IV.

In Section V, we list all of the amount variables included in the imputation files, with comments on the specific treatment to the imputations for each of the variables. The core of the document, this section may be viewed as a supplement to--but not a substitute for--the codebook of "HRS96 imputations," which is released simultaneously with this document.

Finally in Section VI, we list and briefly answer several important questions that we believe users may have regarding the imputations.

Users who are not interested in our imputation strategies may skip the rest of the paper. It is recommended, however, that you consult Section IV, "Producing and Organizing Imputation Results," and Section V, "Questions and Answers," whenever encountering an imputationrelated problem.

II. Rules for Variable Selections

Not all of the variables in HRS Wave 3 data have imputations included in the imputation files. For some, imputations may easily be done by researchers themselves, tailoring to their own needs. Most of those variables do not have brackets. For other variables, there are too few valid records to make any imputations meaningful-even though they do have brackets. To be specific, the following rules were used to determine if an HRS96 variable should be imputed and included in the imputation files ---

Box 1. The Rules for Variable Selections

```
1. The Bracket Rule: In general, all the variables with brackets
should be imputed, and included in the imputation file;
2. The Income/Asset Component Rule: A variable without bracket
should be imputed if it is determined to be an integral component
of household income, housing equity, or net wealth;
3. The Imputability Rule: A variable eligible for imputation based
on Rule 1 or 2 will not be imputed if there are no enough valid
observations.
```


III. The Bracketed and Unbracketed Problems: Examples

An imputation problem encountered in HRS96 may be categorized as one of the two types: bracketed and unbracketed. An unbracketed problem, consisting only of "ownership" and "amount" questions, has a familiar structure (Box 2). The ownership question asks a respondent if he or she "owns" the subject of interest (receives welfare income, pays medical expenditure,

Box 2. The Unbracketed Problem: an Example

```
(Ownership Question)
O1. Did you (or your husband/or your wife/or your partner) receive
any income from welfare in (1995/1996)?
        1. Yes
        5. No
        7. Other
        8. DK (don't know); NA (not ascertain)
        9. RF (refused)
        Blank INAP (Inapplicable)
(If "Yes" to the Ownership Question, then)
(Amount Question)
A1. How much did (you/he/she) receive in (1995/1996)?
    1-999996. Actual value
        999997. Other
        999998. DK (don't know); NA (not ascertained)
        999999. RF (refused)
            Blank. INAP (Inapplicable)
```

Etc.) If the answer is "yes," then the amount question asks for the amount that he or she "owns." When a respondent gives a positive answer to the ownership question but an uncertain answer (e.g., "don't know" or "refused") to the amount question, however, an unbracketed problem would not pursue any further the uncertain answer.

By contrast, a bracketed problem not only has "ownership" and "amount" questions, it also has "bracket" questions regarding the "amount" when a respondent giving a positive answer to the "ownership" question fails to provide an exact amount (Boxes 3a and 3b). Varying in the

Box 3a. The Bracketed Problem with a Single Bracket Question: an Example

```
(Ownership Question)
O1. People sometimes receive property or lump sum payments of money
from such things as pension settlements, insurance settlements,
cash in annuities, or inheritances. ... In the past two years, did
you/or your husband/or your wife/or your partner receive a lump sum
of money or property that you have not already told me about?
        1. Yes
        5. No
        7. Other
        8. DK (don't know); NA (not ascertained)
        9. RF (refused)
        Blank. INAP (Inapplicable)
(If "Yes" to the Ownership Question, then)
(Amount Question)
A1. About how much did you/or your husband/or your wife/or your
partner receive from that?
        0-999996. Actual value
        999997. Other
        999998. DK (don't know); NA (not ascertained)
        999999. RF (refused)
            Blank. INAP (Inapplicable)
(If "999998" or "999999" to the Amount Question, then)
(Bracket Question)
B1. Was it more than $50,000?
    1. Yes
    5. No
    7. Other
    8. DK (don't know); NA (not ascertained)
    9. RF (refused)
    Blank. INAP (Inapplicable)
```

structure, a bracket question generally asks a respondent if the amount of the "thing" in interest that he or she "owns" is more (or less) than a certain break point. Since this question does not ask for an exact amount, it is likely that a respondent unable or unwilling to provide a definite answer to the amount question becomes able or willing to give a definite answer to the bracket question.

A bracketed problem may have one (Box 3a) or more (Box 3b) "bracket" questions; each of them corresponds to a distinct break point. (In the example Box 3a, the only break point is $\$ 50,000$; while in the example Box $3 b$, the three break points are $\$ 3,000, \$ 5,000$, and $\$ 10,000$.) Since an unbracketed problem is equivalent to a bracketed problem with no bracket question, it

Box 3b. The Bracketed Problem with Multiple Bracket Questions: an Example

```
(Ownership Question)
O1. Are you/or your husband/or your wife/or your partner currently
receive any income from veteran benefits?
            1. Yes
            5. No
            7. Other
            8. DK (don't know); NA (not ascertained)
            9. RF (refused)
            Blank. INAP (Inapplicable)
(If "Yes" to the Ownership Question, then)
(Ownership Question Continued)
O2. Who received that?
            1. R only
            2. Spouse or Partner
            3. Both
            7. Other
            8. DK (don't know); NA (not ascertained)
            9. RF (refused)
            Blank. INAP (Inapplicable)
(If "1" or "3" to the above question, then)
A1. (Amount Question for R's Veteran Benefits)
How much did you (yourself) receive last month from that?
    0-999996. Actual value
        999997. Other
        999998. DK (don't know); NA (not ascertained)
        999999. RF (refused)
            Blank. INAP (Inapplicable)
```

Box 3b. The Bracketed Problem with Multiple Bracket Questions (Continued)

```
(If "999998" or "999999" to the Amount Question, then)
(Bracket Question - 1)
B1. Did you receive more than $3,000?
    1. Yes
    5. No
    7. Other
    8. DK (don't know); NA (not ascertained)
    9. RF (refused)
    Blank. INAP (Inapplicable)
If "1" to the Bracket Question, then)
(Bracket Question - 2)
B2. Did you receive more than $5,000?
    1. Yes
    5. No
    7. Other
    8. DK (don't know); NA (not ascertained)
    9. RF (refused)
    Blank. INAP (Inapplicable)
(If "1" to the Bracket Question - 2, then)
(Bracket Question - 3)
B3. Did you receive more than $10,000?
        1. Yes
        5. No
        7. Other
        8. DK (don't know); NA (not ascertained)
        9. RF (refused)
    Blank. INAP (Inapplicable)
```

may be viewed as a special type of bracketed problem.

IV. Producing and Organizing Imputation Results

a). Translating an Imputation Problem for IMPUTE

In order to use the imputation program, IMPUTE, one first needs to translate an imputation problem into a set of variables required by the program. Three types of variables are essential for IMPUTE, including the amount variable, the control variable, and, for a bracketed problem, the bracket variable(s). The amount variable is one for which imputations are done. In general, this variable corresponds to the amount question of an imputation problem, taking on the value that answers the amount question. Similarly, the control variable corresponds to the
ownership question, dictating if a respondent has a positive value on the amount variable; and a bracket variable corresponds to a bracket question, providing with bracket information about the amount when the exact value on the amount variable is not available. The relationship between an imputation problem and the variables translated from the problem is summarized in Box 4 .

Box 4. The Relationship Between an Imputation Problem and the Variables Translated from the Problem

Question in an Imputation Problem		Translated Variable
Ownership Question	->	Control Variable
Amount Question	- ->	Amount Variable
Bracket Question(s)	- ->	Bracket Variable(s)

The translation of an imputation problem into the variables required appears to be an easy task. But, in reality, that is not always true, especially for creating control variables. To impute "veteran benefits a respondent received last month" for the problem in Box 3b, for example, one needs to integrate the two ownership questions, O 1 and O 2 , to create the control variable. That is, whether a respondent received veteran benefits last month may only be determined by combining the information collected from both questions O 1 and O 2 . In fact, as indicated in Section V, about half of the control variables used for HRS96 imputations were created from two or more variables (or ownership questions).

b). The Imputation Strategies

The strategy appropriate for imputing an amount variable depends on the distributional characteristics of the variable as well as the structure of the underlying imputation problem. In producing the HRS96 imputations, we adopted various strategies that we'd believed adequately
reflect the characteristics of various amount variables and their underlying problems (see the last column in Box 10). These strategies, however, have three common features (Box 5).

First, all the imputations were based on a "mixed" method. As detailed in Appendix, Cao (2001), a "mixed" method replaces a missing value with a valid value based on a "hotdeck + regression" technique. Specifically, when it has a closed (e.g., 5,000 - 10,000) or bottom-open (e.g., -- 5,000) bracket, a missing value would be replaced by a value randomly selected from an appropriately-formed donor pool, a technique often referred to as "hotdeck"; when it has a topopen bracket (e.g., 5,000 -), it would be replaced by a value from the donor pool based on the predicted score from a regression model.

Second, whenever a regression technique was needed, the covariate vector always contained four basic demographic variables - including age, sex, educational attainment, and marital status. When imputing for the income from an asset (e.g., business or farm, stock, and bonds), however, the vector also included the asset variable.

And finally, when imputing a respondent variable and a spouse variable that is otherwise identical (e.g., respondent's veteran benefits and spouse's veteran benefits), a joint donor pool was always formed. The underlying rationale for pooling a respondent variable with a spouse variable is of two-fold: (i) the question regarding the respondent's veteran benefits may be

Box 5. The Common Features of the Imputation Strategies

1. A "mixed" method for all the imputations
2. A covariate vector containing four basic demographic variables (age, sex, educational attainment, and marital status), and, when imputing the income from an asset, the asset variable
3. A joint donor pool for imputing the same variables for a respondent and his/her spouse
treated as the same as the question regarding the spouse's veteran benefits, so a joint donor pool is conceptually reasonable; and (ii) since pooling together the valid values of both respondent and spouse variables always increases the size of the donor pool, the reliability of the imputations for both the respondent variable and the spouse variable tends to be increased.

c). The Conventions Used for Organizing Imputation Results

Anticipating that the HRS96 imputations are most likely to be used together with other HRS96 variables in the public release data, we organized the results according to a set of useful conventions. First, an easy-to-understand connection between an imputation-related variable and the original amount variable is built. An imputation-related variable is always named as an original amount variable plus a single letter extension, a rule that becomes clearer and clearer as we proceed.

Second, for each amount variable imputed, six imputation-related variables are reported. Combined, these variables provide not only information on the structure of the imputation problem, but also information on the way the imputations have been done. A brief description of the variables is given in Box 6 .

An imputation-related variable with extension "x"-- or the " x " variable for short -- stands for imputed values. When an original amount variable has a valid value, the "x" variable simply maintains the value; otherwise, it takes on a value out of imputation. By default, a valid value is one that an amount variable may possibly take on. Neither "missing," "don't know," nor "refused" is a valid value, although some missing values may be legitimate. (For example, a missing value on the spouse's social security income for a respondent who is single should be legitimate. As a rule, for a legitimate missing on an amount variable, the "x" variable will be set to zero (0), while the control variable to missing (.).

Box 6. Imputation-Related Variables

Variable Name	Description
Q1234	Original amount variable in the public release data
Q1234x	Variable for imputed value (imputed amount variable)
Q1234t	Variable for imputation type or quality
Q1234s	Variable summarizing bracket information
Q1234d	Vontrol variable for the amount variable
Q1234e	Variable for the upper bound value of the bracket

The " s " variable synthesizes the information on the bracket associated with the amount variable. More often than not, a bracketed problem has two or more questions. To make it easier to use the information collected from all the bracket questions, the "s" variable combines the answers from the questions into a single index. The rule for reading such an index is shown in Box 7.

Box 7. The Rules for Reading an Index of the "s" Variable

```
1.The General Rule: Let an imputation problem with an amount
variable Q1234 have i bracket variables, var1, var2, ..., vari.
Each of the variables corresponds to a distinct break point
value, with varl to the smallest value, var2 to the second
smallest, etc. Let a missing value on any of the bracket
variables be set to zero.
    The variable Q1234s is then defined as ---
    Q1234s = var1 + var2*10 + var3*100 + ... + vari*10(i-1).
2. The Special Rule: The following special codes are reserved for
    an "s" variable ---
    '-2': the missing value on the amount variable is legitimate;
    '-1': the value on the amount variable is valid;
    '0': imputation for the amount variable was based on no
        bracket information.
```

The " c " variable is the control variable about which we have already discussed. For "HRS96 imputations," a value " 1 " on the " c " variable stands for a positive answer (or "yes") to the ownership question, a value " 5 " for a negative answer (or "no"), while " 8 " and " 9 " for "don't know" and "refused," respectively.

The "d" and "e" variables give the lower and upper bound values, respectively, of the bracket. For a closed bracket (e.g., $5000-10000$), neither the "d" or "e" variables should be missing. For an open-end bracket (e.g., 5000-, - 10000), the variable corresponding to the open end (lower or upper) should be missing. When the amount variable has no bracket information (thus open at both ends), therefore, both the " d " and "e" variables should be missing. In addition, a special code, "-1," has been reserved for the two variables if the amount variable is about the spouse of an information-providing respondent and the respondent has no spouse.

Combining the information from "x," "s," "c," "d," and "e" variables, the " t " variable is an index for identifying the type of imputation done to each record of the amount variable. Regardless of the structure of an imputation problem, an imputed value belongs to one of ten categories, which are listed in the last column in Box 8. While a full appreciation of the availability of this imputation quality variable requires a thorough knowledge of the imputation program IMPUTE, users without any knowledge of the program may still find the variable useful if they want to subset, modify our imputation results, or do the imputation work of their own. ${ }^{4}$
d). Post-Imputation Treatment: the " z " Variable

Depending on the structure of an imputation problem, the amount variable for which imputations are actually done may or may not be what we want to know conceptually. Consider

[^1]```
Box 8. Imputation Type as Determined by the "x," "c," "d,"
 "e," and "s" Variables 5
```

| Original Amount Variable (Q1234) | Imputation Variable (Q1234x) | Control <br> Variable <br> (Q1234c) | Summary <br> Bracket <br> Variable <br> (Q1234s) | Break poi <br> Bottom <br> (Q1234d) | $\begin{gathered} \text { nt Value } \\ \text { Top } \\ (\mathrm{Q} 1234 \mathrm{e}) \end{gathered}$ | Imputation <br> Type <br> (Q1234t) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| legitimate missing (1) | 0 | . | -2 | . | . | 1 |
| legitimate missing(2) | 0 | . | -2 | -1 | -1 | 1 |
| valid value | $>=0$ | $(1,5)$ | -1 | $>=0$ | $>=0$ | 2 |
| closed bracket | $t>0$ | 1 | >0 | $>=0$ | $>0$ | 3 |
| bottom-open bracket | $>=0$ | 1 | >0 | . | >0 | 4 |
| top-open bracket | >0 | 1 | >0 | $>=0$ | . | 5 |
| bracket with no information | n $>=0$ | 1 | $>=0$ | . | - | 6 |
| imputed ownership and Amount | $>=0$ | 8,9 | 0 | - | - | 7 |

the example in Box 3b. The amount variable for this problem is naturally "the veteran benefits a respondent received last month." But what about if we want to know another variable, "the veteran benefits a respondent received in the last calendar year'? Can we construct this new variable based on the imputations for the original amount variable?

The work involving the conversion of the imputations for an original amount variable into another related variable is called as "post-imputation treatment," while the new, converted variable is named with the original amount variable plus an extension "z" (e.g., Q1234z). In most

[^2]of the cases in the "HRS96 imputations," the "x" to "z" conversions was straightforward, involving only simple mathematical computations. For other cases, however, the tasks were quite complicated, as illustrated for the example "the veteran benefits a respondent received in the last calendar year" in Box 9.

Box 9. The "x" to "z" Conversion: an Example

```
Original Amount Variable: E4043 (Veteran Benefits a Respondent
 Received Last month (year 1996))
Imputation Variable: E4043x (Veteran Benefits a Respondent
 Received Last Month (year 1996))
Objective: Construct E4043z (Veteran Benefits a Respondent
 Received in Year 1995)
The "Starting-time-dependent" Conversion Strategy ---
1. Assumption: monthly veteran benefits a respondent received in
 year }1995\mathrm{ was about the same as he/she received last month
2. Determine when a respondent started to receive the benefits:
 E4051 (starting year), E4052 (starting month)
3. Impute E4051x and E4052x as some of the values of E4051 and E4052
 are missing
4. E4043x to E4043z Conversion:
 If E4051x <= 1994 then E4043z= E4043x*12
 Else if E4051x > 1995 then E4043z = 0
 Else if E4051x = 1995 then E4043z = E4043x*(13-E4052x)
```

In order to know from "the veteran benefits a respondent received last month" (E4043x) "the veteran benefits a respondent received in year 1995 (or last calendar year)" (E4043z), we adopted a so-called "starting-time dependent" x-to-z conversion strategy. ${ }^{6}$ We first built the relationship between the monthly benefits in 1996 and in 1995. Without great loss of accuracy, we assumed that "monthly veteran benefits a respondent received--if any--in 1995 were about

[^3]the same as he/she received last month." We then determined if a respondent was receiving any veteran benefits in 1995. To do this, we imputed two "starting-time" variables, E4051 (year starting to receive the benefits) and E4052 (month starting to receive the benefits), as some of the values of the variables were missing. Finally, we made the conversion based on the assumed relationship between the monthly benefits in 1996 and in 1995, and the imputations for the "starting-time" variables.

## V. The Structure of "HRS96 Imputations"

"HRS96 imputations" are divided into five different data sets: "h1996i_e," "h1996i_f," "h1996i_j," "h1996i_n," and "h1996i_r." The names of the data files contain both HRS wave (h1996i) and section (e.g., e, f, $j$, $n$, and $r$ ) identifiers. That is, " $h 1996 \mathrm{i} \_\mathrm{e}$ " is a file containing imputations for HRS Wave 3 data, section E (health care utilization), "h1996i_f" for section F (housing), "h1996i_j" for section J (income), "h1996i_n" for section N (widowhood and asset changes), and "h1996i_r" for section $R$ (health insurance). Because of the structure of the original data, "h1996i_f," "h1996i_j," and "h1996i_n" are household level data sets, with one record for each HRS Wave 3 household; "h1996i_e" and "h1996i_r" are respondent level data sets, with one record for each HRS Wave 3 respondent.

In this section, we list all the amount variables covered in the five imputation files. For each variable, we list its name, a label defining the variable ${ }^{7}$, the variables involved in the creation of the control variable, and, when needed, a brief comment on the imputation strategy used. Users curious about our imputation strategy for any amount variable are encouraged to look up the codebook for the HRS96 public release data as well as the documentation file of the

[^4]program IMPUTE for a better understanding.
We first list the amount variables for which imputations were actually done (Box 10), then the variables for which the " $x$ " to " $z$ " conversions were made (Box 11). For convenience, we also provide the definitions of four aggregate variables included in the imputation files (Box 12). These aggregates are: household income, net wealth (in the file "h1996i_j"), main home equity, and second home equity (in the file "h1996i_f"). While a conscious effort was made to have them constructed as well as possible, users are not required to agree with us on the definitions.

Box 10. The Amount Variables Imputed
$\left.\left.\begin{array}{|lll|}\hline \text { Label } & \text { Variables Used for Creating } & \text { Comments on } \\ \text { Variable Name } & \text { the Control Variable } & \text { the Imputation Strategy }\end{array}\right] \begin{array}{ll} \\ & \text { SECTION E: HEALTH CARE UTILIZATION }\end{array}\right]$

Box 10. The Amount Variables Imputed (Continued)

| Label <br> Variable Name | Variables Used for Creating the Control Variable | Comments on the Imputation Strategy |
| :---: | :---: | :---: |
| F7A.\$ PAYMENT ON MORTGAGE | E2251M1 | annualized before imputation |
| E2252 | $\begin{aligned} & \text { E2251M2 } \\ & \text { E2251M3 } \\ & \text { F2253 } \end{aligned}$ |  |
| F7D.\$ OWN ON MORTGAGE | E2251M1 |  |
| E2256 | $\begin{aligned} & \text { E2251M2 } \\ & \text { E2251M3 } \end{aligned}$ |  |
| F9A.\$ PAYMENT 2ND | E2251M1 | annualized before imputation |
| MORTGAGE | E2251M2 |  |
| E2260 | $\begin{aligned} & \text { E2251M3 } \\ & \text { E2261 } \end{aligned}$ |  |
| F9C.\$ OWN ON 2ND | E2251M1 |  |
| MORTGAGE | E2251M2 |  |
| E2263 | E2251M3 |  |
| F10.\$ PAYMENT OTHER LOAN | E2251M1 | annualized before imputation |
| E2267 | E2251M2 |  |
|  | E2251M3 |  |
|  | E2268 |  |
| F10E.\$OWE ON LOAN | E2251M1 |  |
| E2270 | E2251M2 |  |
|  | E2251M3 |  |
| F11A.\$ COULD BORROW E2275 | E2274 |  |
| F11C.\$ OWED EQUITY LOAN | E2276 |  |
| E2277 |  |  |
| F13.REAL ESTATE TAX | E2226 |  |
| E2292 | E2229 |  |
|  | E2234 |  |
| F14.\$ AMOUNT RENT | E2226 | annualized before imputation |
| E2301 | E2229 |  |
|  | E2234 |  |
|  | E2302 |  |
| F20A.\$ PARK ASSOC FEES | E2316 | annualized before imputation |
| E2317 | E2318 |  |
| E2326X F21D.HOW MUST | E2325 |  |
| LUMP_SUM |  |  |
| E2326 |  |  |
| F21D. \$ ASSOC FEE | E2332 | annualized before imputation |
| E2333 | E2334 |  |

## Box 10. The Amount Variables Imputed (Continued)

| Label <br> Variable Name | Variables Used for Creating the Control Variable | Comments on the Imputation Strategy |
| :---: | :---: | :---: |
| F46E.PURCHASE PRICE | E2407 |  |
| 2ND HOME | E2408 |  |
| E2434 | E2409 |  |
|  | E2412 |  |
|  | E2417 |  |
| F46F.\$ VALUE 2ND HOME | E2407 |  |
| E2435 | E2408 |  |
|  | E2409 |  |
|  | E2412 |  |
|  | E2417 |  |
| F47A. \$ PAYMENT ON | E2440M1 | annualized before imputation |
| MORTGAGE-2 | E2442 |  |
| E2441 |  |  |
| F47D. \$ OWN ON | E2440M1 |  |
| MORTGAGE-2 |  |  |
| E2445 |  |  |
| F50B. \$ OWE ON LOAN-2 | E2440M1 |  |
| E2459 |  |  |
| F53.REAL ESTATE TAX-2 | E2407 |  |
| E2480 | E2408 |  |
|  | E2409 |  |
|  | E2412 |  |
|  | E2417 |  |
|  | SECTION J: ASSETS AND INCOME |  |
| J6. R SELF-EMPLOYMENT | E3875 | joint donor pool with E3909 |
| INCOME AMOUNT <br> E3876 |  |  |
| J8.R HOW MUCH WAGES | E3882 | joint donor pool with E3916 |
| AND SALARY joint donor pool with e3gi6 |  |  |
| E3883 |  |  |
| J10.R HOW MUCH PROF | E3889 | joint donor pool with E3923 |
| PRACTICE OR TRADE <br> E3890 |  |  |
|  |  |  |
| J11A.R HOW MUCH TIPS, BONUSES, COMMISSIO E3897 | E3896 | joint donor pool with E3930 |
|  |  |  |
| J12A.HOW MUCH OTHER <br> INCOME LCY <br> E3903 | E3902 |  |
|  |  |  |
|  |  |  |

Box 10. The Amount Variables Imputed (Continued)

| Label <br> Variable Name | Variables Used for Creating the Control Variable | Comments on the Imputation Strategy |
| :---: | :---: | :---: |
| J14.SP HOW MUCH SELF-EMPLOYMENT E3909 | E3908 | joint donor pool with E3876 |
| J16.SP HOW MUCH WAGES AND SALARY E3916 | E3915 | joint donor pool with E3883 |
| J18.SP HOW MUCH PROF PRACTICE OR TRADE E3923 | E3922 | joint donor pool with E3890 |
| J19A.SP HOW MUCH <br> TIPS, BONUSES, COMMISSI <br> E3930 | E3929 | joint donor pool with E3897 |
| J20A.SP HOW MUCH OTHER INCOME E3936 | E3935 |  |
| J23.AMT UNEMPL COMP LCY <br> E3944 | $\begin{aligned} & \text { E3942 } \\ & \text { E3943 } \end{aligned}$ | joint donor pool with E3952 |
| J28. AMT S/P UNEMPL COMP LCY E3952 | $\begin{aligned} & \text { E3842 } \\ & \text { E3943 } \end{aligned}$ | joint donor pool with E3944 |
| J35.AMT WORKERS COMP LCY E3963 | $\begin{aligned} & \text { E3961 } \\ & \text { E3962 } \end{aligned}$ | joint donor pool with E3974 |
| J40.AMT S/P WORKERS COMP LCY <br> E3974 | $\begin{aligned} & \text { E3961 } \\ & \text { E3962 } \end{aligned}$ | joint donor pool with E3963 |
| J47.R AMT RECVD SS LAST MO E3985 | $\begin{aligned} & \text { E3983 } \\ & \text { E3984 } \end{aligned}$ | joint donor pool with E3996 |
| J50A1.SP HOW MUCH SS BENEFITS E3996 | $\begin{aligned} & \text { E3983 } \\ & \text { E3984 } \end{aligned}$ | joint donor pool with E3985 |
| J53. R SOC SEC EXPECTED AMOUNT E4010 | $\begin{aligned} & \text { E4008 } \\ & \text { E4011 } \end{aligned}$ | annualized before imputation joint donor pool with E4016 |
| J57. SP SOC SEC EXPECTED AMOUNT E4016 | $\begin{aligned} & \text { E4014 } \\ & \text { E4017 } \end{aligned}$ | annualized before imputation joint donor pool with E4010 |
| $\begin{aligned} & \text { J61.R/S SSI \$ } \\ & \text { E4023 } \end{aligned}$ | E4021 |  |
| J66.AMT WELFARE LCY E4038 | E4036 |  |

## Box 10. The Amount Variables Imputed (Continued)

| Label <br> Variable Name | Variables Used for Creating the Control Variable | Comments on the Imputation Strategy |
| :---: | :---: | :---: |
| J69.R VET BENEFIT LAST | E4041 | joint donor pool with E4056 |
| MONTH | E4042 |  |
| E4043 |  |  |
| J72.AMT SP VET BEN | E4041 | joint donor pool with E4043 |
| LAST MO | E4042 |  |
| E4056 |  |  |
| J77.REAL ESTATE \$ | E4070 |  |
| E4071 |  |  |
| J82.RENTAL RECEIVE \$ | E4085 | integration with annualized |
| LCYEAR | E4086 | "per-period income" (E4087) |
| E4089 | E4087 | to increase the size of the |
|  | E4088 | donor pool |
| J84.BUSINESS OR FARM \$ | E4096 |  |
| E4097 | E4100 |  |
|  | E4101 |  |
| J89.BUS/FARM INCOME \$ | E4112 | integration with annualized |
| LCYEAR | E4113 | "per-period income" (E4114) |
| E4117 | E4114 | to increase the size of the |
|  | E4115 | donor pool |
| J93.TOTAL \$ IRA | E4124 |  |
| ACCOUNT |  |  |
| E4127 |  |  |
| J95.IRA NO REG INC | E4137 | IRA-1 total withdrawal in |
| WITHDRAW \$-1 | E4139 | last 2 years |
| E4138 |  | annualized before imputation |
| J100.TOTAL \$ IRA | E4125 |  |
| ACCOUNT-2 |  |  |
| E4149 |  |  |
| J102.IRA NO REG INC | E4158 | IRA-2 total withdrawal in |
| WITHDRAW \$-2 | E4160 | last 2 year |
| E4159 |  | annualized before imputation |
| J107.TOTAL \$ IRA | E4125 |  |
| ACCOUNT-3 |  |  |
| E4171 |  |  |
| J109.IRA NO REG INC | E4177 | IRA-3 total withdrawal in |
| WITHDRAW \$-3 | E4179 | last 2 years |
| E4178 |  | annualized before imputation |
| J113.AMT CONVERT | E4187M1 |  |
| E4188X | E4187M2 |  |

Box 10. The Amount Variables Imputed (Continued)

| Label <br> Variable Name | Variables Used for Creating the Control Variable | Comments on the Imputation Strategy |
| :---: | :---: | :---: |
| J114.ANNUITY AMOUNT | E4187M1 | annuity income in last 2 years annualized before imputation |
| E4189 | $\begin{aligned} & \text { E4187M2 } \\ & \text { E4190 } \end{aligned}$ |  |
| J124.AMT WITHDRAW | E4187M1 |  |
| E4204 | E4187M2 |  |
| J132.AMT PENSION | E4209 | joint donor pool with E4237_1 |
| LAST MONTH | E4210 |  |
| E4214_1 |  |  |
| J132.(J30D)AMT | E4209 | joint donor pool with E4237_2 |
| PENSION LAST MONTH | E4210 |  |
| E4214_2 | E4212 |  |
| J136.AMT IN PENSION | E4221_1 | joint donor pool with E4245_1 |
| E4222_1 |  |  |
| J136.AMT IN PENSION | E4221_2 | joint donor pool with E4245_2 |
| E4222_2 Joint |  |  |
| J143.OTHER PENSIONS | E4209 | joint donor pool with E4258 |
| E4232 | E4211 |  |
|  | E4212 |  |
| J148.AMT PENSION | E4209 | joint donor pool with E4214_1 |
| LAST MONTH | E4210 |  |
| E4237_1 | E4234 |  |
| J148.(J31D)AMT | E4235 | joint donor pool with E4214_2 |
| PENSION LAST MONTH | E4209 |  |
| E4237_2 | E4210 |  |
|  | E4234 |  |
| J152.AMT IN PENSION | E4244_1 | joint donor pool with E4222_1 |
| E4245_1 joint donorpoor wither222_1 |  |  |
| J152.(J31H)AMT IN | E4244_2 | joint donor pool with E4222_2 |
| PENSION |  |  |
| E4245_2 |  |  |
| J159.OTHER PENSIONS SP | E4234 | joint donor pool with E4232 |
| E4258 | E4235 |  |
| J168.AMT ANNUITY INC E4269_1 | E4263 | joint donor pool with E4298_1 |
|  | E4264 |  |
| J168.(J33D)AMT | E4263 | joint donor pool with E4298_2 |
| ANNUITY INC | E4264 |  |
| E4269_2 | E4265 |  |
|  | E4266 |  |

```
Box 10. The Amount Variables Imputed (Continued)
```

| Label <br> Variable Name | Variables Used for Creating the Control Variable | Comments on the Imputation Strategy |
| :---: | :---: | :---: |
| J176.OTHER ANNUITIES E4291 | E4266 | joint donor pool with E4320 |
| J181.AMT ANNUITY INC SP | E4263 | joint donor pool with E4269_1 |
| E4298_1 | E4264 |  |
| J181.(J35C)AMT | E4263 | joint donor pool with E4269_2 |
| ANNUITY INC SP | E4264 |  |
| E4298_2 | E4295 |  |
|  | E4296 |  |
| J188A.OTHER ANNUITY | E4295 | joint donor pool with E4291 |
| INC SP | E4296 |  |
| E4320 |  |  |
| J208.TOTAL \$ STOCKS | E4339 |  |
| E4340 |  |  |
| J213.STOCK INCOME \$ | E4359 | integration with annualized |
| LCYEAR | E4360 | "per-period income" (E4360) |
| E4362 | E4361 | to increase the size of the donor pool |
| J216.TOTAL \$ BONDS | E4382 |  |
| E4383 |  |  |
| J221.BOND INCOME \$ | E4401 | integration with annualized |
| LCYEAR | E4402 | "per-period income" (4403) |
| E4405 | E4403 | to increase the size of the donor pool |
| J223.TOTAL \$ CHECKING, SAVINGS | E4425 |  |
| E4426 |  |  |
| J228.CHECKING INCOME | E4441 | integration with annualized |
| \$ LCYEAR | E4442 | "per-period income" (E4443) |
| E4445 | E4443 | to increase the size of the |
|  | E4444 | donor pool |
| J230.TOTAL \$ CD | E4464 |  |
| E4465 |  |  |
| J236.CD INCOME \$ | E4483 | integration with annualized |
| E4487 | E4486 | "per-period income" (E4485) |
|  | E4484 | to increase the size of the |
|  | E4485 | donor pool |
| J238.TRANSPORTATION | E4500 |  |
| E4501 |  |  |
| J240.OTHER ASSETS \$ | E4513 |  |
| E4514 |  |  |
| J242.OTHER ASSETS E4518 |  |  |
| INCOME |  |  |
| E4519 |  |  |


| Label <br> Variable Name | Variables Used for Creating the Control Variable | Comments on the Imputation Strategy |
| :---: | :---: | :---: |
| J245.TRUST FUNDS \$LCY E4564 | E4563 |  |
| J248.AMT ALIMONY \$ LCY E4568 | E4567 |  |
| J250.OTHER SOURCES \$ 1994 E4575 | E4574 |  |
| J274.AMT HU MEMBERS <br> INCOME <br> E4625 | E4625 |  |
| J277.AMT ASSETS OTH HHMEM <br> E4633 | E4632 |  |
| J284.TOTAL FAMILY <br> INCOME <br> E4643 | E4643 |  |
| J290.USE ASSETS \$ E4666 | $\begin{aligned} & \text { E4652 } \\ & \text { E4667 } \end{aligned}$ | use assets in 2 years annualized before imputation |
| J293.ASSET ADD \$ E4689 | E4687 |  |
| $\begin{aligned} & \text { J299.\$ TRUSTS } \\ & \text { E4713 } \end{aligned}$ | E4709 |  |
| $\begin{aligned} & \text { J303.DEBTS \$ } \\ & \text { E4727 } \end{aligned}$ | E4726 |  |
| $\begin{aligned} & \text { J309.LUMP \$-1 } \\ & \text { F4752 } \end{aligned}$ | E4748 |  |
| $\begin{aligned} & \text { J315.LUMP \$-2 } \\ & \text { E4759 } \end{aligned}$ | E4755 |  |
| $\begin{aligned} & \text { J321.LUMP \$-3 } \\ & \text { E4766 } \end{aligned}$ | E4762 |  |
| SECTION N: WIDOWHOOD AND ASSET CHANGES |  |  |
| N2. SELLING PRICE E4833 | $\begin{aligned} & \text { E4829 } \\ & \text { E4830 } \end{aligned}$ |  |
| N4. PURCHASE PRICE E4839 | E4839 |  |
| N6. SELLING PRICE E4846 | $\begin{aligned} & \text { E4843 } \\ & \text { E4846 } \end{aligned}$ |  |

Box 10. The Amount Variables Imputed (Continued)


Box 11. The "z" Variables

| Label <br> Variable Name Strategy | Variables Used for Creating the Control Variable | Comments on the Imputation |
| :---: | :---: | :---: |
| J47.R AMT RECVD | E3990 | starting-time dependent |
| SS LAST MO | E3991 |  |
| E3985Z |  |  |
| J50A1.SP HOW MUCH | E4001 | starting-time dependent |
| SS BENEFITS | E4002 |  |
| E3996Z |  |  |
| J61.R/S SSI \$ | E4027 | starting-time dependent |
| E4023Z | E4028 |  |
| J69.R VET BENEFIT | E4051 | starting-time dependent |
| LAST MONTH | E4052 |  |
| E4043Z |  |  |
| J72.AMT SP VET | E4064 | starting-time dependent |
| BEN LAST MO | E4065 |  |
| E4056Z |  |  |
| J89.BUS/FARM | E4122 | E4117Z=E4117X if |
| INCOME \$ LCYEAR |  | E4122=5, 0 otherwise |
| E4117Z |  |  |
| J95.IRA NO REG INC |  | E4138Z=E4138X/2 |
| WITHDRAW \$-1 |  |  |
| E4138Z |  |  |
| J102.IRA NO REG INC |  | E4159Z=E4159X/2 |
| WITHDRAW \$-2 |  |  |
| E4159Z |  |  |
| J109.IRA NO REG INC |  | $\mathrm{E} 4178 \mathrm{Z}=\mathrm{E} 4178 \mathrm{X} / 2$ |
| WITHDRAW \$-3 |  |  |
| E4178Z |  |  |
| J114.ANNUITY AMOUNT |  | E4189Z=E4189Z/2 |
| E4189Z |  |  |
| J124.AMT WITHDRAW |  | E4204Z=E4204X/2 |
| E4204Z |  |  |
| J132.AMT PENSION | E4223_1 | starting-time dependent |
| LAST MONTH | E4224_1 |  |
| E4214_1Z - |  |  |
| J132.(J30D)AMT PENSION | E4223_2 | starting-time dependent |
| LAST MONTH | E4223_2 |  |
| E4214_2Z |  |  |

Box 11. The "z" Variables (Continued)


## VI. Questions and Answers

Q1. What variables were imputed for the HRS 96 data?
A1. All the variables imputed for the HRS96 data are listed in Box 10. These variables were selected based on the rules detailed in Box 1 .

Box 12. Household Income, Housing Equity, and Net Wealth

1. Household income in the last calendar year:

$$
\begin{aligned}
\text { ehhinc }= & \mathrm{E} 3876 \mathrm{x}+\mathrm{E} 3909 \mathrm{x}+\mathrm{E} 3883 \mathrm{x}+\mathrm{E} 3916 \mathrm{x}+\mathrm{E} 3890 \mathrm{x}+\mathrm{E} 3923 \mathrm{x}+ \\
& \mathrm{E} 3897 \mathrm{x}+\mathrm{E} 3930 \mathrm{x}+\mathrm{E} 3903 \mathrm{x}+\mathrm{E} 3936 \mathrm{x}+\mathrm{E} 3944 \mathrm{x}+\mathrm{E} 4519 \mathrm{x}+ \\
& \mathrm{E} 3952 \mathrm{x}+\mathrm{E} 3963 \mathrm{x}+\mathrm{E} 3974 \mathrm{x}+\mathrm{E} 4038 \mathrm{x}+\mathrm{E} 4564 \mathrm{x}+\mathrm{E} 4568 \mathrm{x}+ \\
& \mathrm{E} 4575 \mathrm{x}+\mathrm{E} 3985 \mathrm{z}+\mathrm{E} 3996 \mathrm{z}+\mathrm{E} 4023 \mathrm{z}+\mathrm{E} 4043 \mathrm{z}+\mathrm{E} 4056 \mathrm{z}+ \\
& \mathrm{E} 4089 \mathrm{x}+\mathrm{E} 4117 \mathrm{z}+\mathrm{E} 4138 \mathrm{z}+\mathrm{E} 4159 \mathrm{z}+\mathrm{E} 4178 \mathrm{z}+\mathrm{E} 4214 \_1 \mathrm{z}+ \\
& \mathrm{E} 4214 \_2 \mathrm{z}+\mathrm{E} 4237 \_1 \mathrm{z}+\mathrm{E} 4237 \_2 \mathrm{z}+\mathrm{E} 4269 \_1 \mathrm{z}+\mathrm{E} 4269 \_2 \mathrm{z}+ \\
& \mathrm{E} 4298 \_1 \mathrm{z}+\mathrm{E} 4298 \_2 \mathrm{z}+\mathrm{E} 4362 \mathrm{x}+\mathrm{E} 4405 \mathrm{x}+\mathrm{E} 4445 \mathrm{x}+\mathrm{E} 4487 \mathrm{x}+\mathrm{E} 4189 \mathrm{z}
\end{aligned}
$$

2. Net wealth at the time of interview:

$$
\begin{aligned}
\text { eassets }= & \mathrm{E} 4071 \mathrm{x}+\mathrm{E} 4097 \mathrm{x}+\mathrm{E} 4127 \mathrm{x}+\mathrm{E} 4149 \mathrm{x}+\mathrm{E} 4171 \mathrm{x}+\mathrm{E} 4340 \mathrm{x}+ \\
& \mathrm{E} 4383 \mathrm{x}+\mathrm{E} 4426 \mathrm{x}+\mathrm{E} 4465 \mathrm{x}+\mathrm{E} 4501 \mathrm{x}+\mathrm{E} 4514 \mathrm{x}+\mathrm{E} 4713 \mathrm{x}-\mathrm{E} 4727 \mathrm{x}
\end{aligned}
$$

3. Main home equity:
ehome1 $=$ E2246x-E2256x-E2263x-E2270x-E2277x
4. Second home equity:
ehome2 $=\mathrm{E} 2435 \mathrm{x}-\mathrm{E} 2445 \mathrm{x}-\mathrm{E} 2459 \mathrm{x}-\mathrm{E} 2466 \mathrm{x}$

Q2. How did you impute a variable?
A2. For all of the variables selected for imputation, we used a "mixed" imputation method, which combines a "hotdeck" imputation procedure and a "linear regression" procedure. Please see Cao (2001), Appendix, for detail.

Q3. Can I impute a variable myself?
A3. Yes, you certainly can. If the variable you want to impute was not selected for imputation by us--most likely, the variable would have no bracket--you may impute it based on any imputation procedure that you believe reasonable ("hotdeck," for example). If you want to do imputations yourself systematically, using a different method, you may do so by taking advantage of the availability of the original bracket variables in the data sets. And you may use a summary bracket variable (the "s" variable) to simplify your work.

Q4. What is the main difference between an " $x$ " variable and a " $z$ " variable?
A4. An " $x$ " variable is an original imputation variable, while a " $z$ " variable is one converted from a corresponding " $x$ " variable. The conversion is needed usually because the " $x$ " variable is not what we want conceptually. A " z " variable must have a corresponding " x " variable, but not vice versa.

Q5. Can I define "hhinc" myself?
A5. Yes, you can, and sometimes you should. For example, if you don't want to have household income contain anything from assets, you should drop the asset income components from the equation in Box 12.

Q6. Why are there sixty (60) households with missing values on all the variables in the household level files "h1996i_f," "h1996i_j," and "h1996i_n"?

A6. There are no financial respondents for those households. However, since the households were included in the public release data, we include them in our imputation files to make the files consistent with the public release data.

Q7. Why are there multiple imputation-related variables for each amount variable?
A7. For each amount variable, there are six imputation-related variables: the "x," "c," "s," "d," "e," and " $t$ " variables. (For definitions of the variables, see Box 6.) We include these variables in the data sets to accommodate various needs of perspective users. Those who just want to have imputed values may keep only " $x$ " and, if applicable, " $z$ " variables when working with the data.

Q8. How do you create a "c" variable?

A8. The creation of a "c" variable may be complicated or very simple, depending on the structure of the imputation problem. Sometimes we need only a single variable to create the control variable for the problem. In other cases, we need to incorporate information from several variables to determine if a respondent or household receives welfare income, pays medical expenditures, etc.

Q9. What should I do if I find any problems with the imputations?
A9. Problems with the imputations may exist for various reasons. If you believe that the imputations for a variable do not look correct, please contact hrsquest@isr.umich.edu.

## References

Cao, H. "IMPUTE: A SAS Application System from Missing Value Imputations --- With Special Reference to HRS Income/Assets Imputations, Version 2.0," Institute for Social Research, University of Michigan, February 2001.

Herringa, S. G., Hill, D. H., and Howell, D. A. "Unfolding Brackets for Reducing Item NonResponse in Economic Surveys," Health and Retirement Study Working Paper, No. 94-029, June 1995.

Hill, D. H. "Unfolding Bracket Method in the Measurement of Expenditures and Wealth," in J. P. Smith, and R. J. Willis (eds.), Wealth, Work, and Health, University of Michigan, 1999.

Juster, F. T., and Smith, J. P. "Improving the Quality of Economic Data: Lessons from the HRS and AHEAD," Journal of the American Statistical Association, Vol. 92, No. 440, 1998.


[^0]:    ${ }^{1}$ Since 1998, HRS and AHEAD have been integrated into a single study, still named HRS.
    ${ }^{2}$ A SAS application, the program IMPUTE, along with a documentation file, is available upon request. Send request to: hrsquest@isr.umich.edu

    3 "Amount variable" is a term used in the imputation program, IMPUTE, to indicate a variable for which imputations are done. For the definition of "amount variable," as well as other important terminologies used in the program (and hence in this file), see Section IV or consult Cao (2001).

[^1]:    ${ }^{4}$ For example, if one does not trust in our work for open brackets, one may keep only those records with the values of the " t " variable less than 5 .

[^2]:    ${ }^{5}$ Note that the rule for creating a " t " variable has been changed since July 2000, when we released the AHEAD95 imputations.

[^3]:    ${ }^{6}$ As indicated in Box 11, this strategy was used for x-to-z conversion for many other variables as well.

[^4]:    ${ }^{7}$ This is the same label used in the HRS96 public release data, combining the question number with a brief definition of the variable.

