A pilot genome-wide association study meta-analysis of gastroparesis.

TitleA pilot genome-wide association study meta-analysis of gastroparesis.
Publication TypeJournal Article
Year of Publication2023
AuthorsTavares, LCamargo, Zheng, T, Kwicklis, M, Mitchell, E, Pandit, A, Pullapantula, S, Bernard, C, Teder-Laving, M, Marques, FZ, Esko, T, Kuo, B, Shulman, RJ, Chumpitazi, BP, Koch, KL, Sarosiek, I, Abell, TL, McCallum, RW, Parkman, HP, Pasricha, PJ, Hamilton, FA, Tonascia, J, Zawistowski, M, Farrugia, G, Grover, M, D'Amato, M
JournalUnited European Gastroenterol Journal
ISSN Number2050-6414
Keywordsabdominal pain, delayed gastric emptying, Diabetes, enteric nervous system, gastroparesis, Genetics, immune dysregulation, Inflammation, motor function., PXDNL

BACKGROUND: Gastroparesis (GP) is characterized by delayed gastric emptying in the absence of mechanical obstruction.

OBJECTIVE: Genetic predisposition may play a role; however, investigation at the genome-wide level has not been performed.

METHODS: We carried out a genome-wide association study (GWAS) meta-analysis on (i) 478 GP patients from the National Institute of Diabetes and Digestive and Kidney Diseases Gastroparesis Clinical Research Consortium (GpCRC) compared to 9931 population-based controls from the University of Michigan Health and Retirement Study; and (ii) 402 GP cases compared to 48,340 non-gastroparesis controls from the Michigan Genomics Initiative. Associations for 5,811,784 high-quality SNPs were tested on a total of 880 GP patients and 58,271 controls, using logistic mixed models adjusted for age, sex, and principal components. Gene mapping was obtained based on genomic position and expression quantitative trait loci, and a gene-set network enrichment analysis was performed. Genetic associations with clinical data were tested in GpCRC patients. Protein expression of selected candidate genes was determined in full thickness gastric biopsies from GpCRC patients and controls.

RESULTS: While no SNP associations were detected at strict significance (p ≤ 5 × 10 ), nine independent genomic loci were associated at suggestive significance (p ≤ 1 × 10 ), with the strongest signal (rs9273363, odds ratio = 1.4, p = 1 × 10 ) mapped to the human leukocyte antigen region. Computational annotation of suggestive risk loci identified 14 protein-coding candidate genes. Gene-set network enrichment analysis revealed pathways potentially involved in immune and motor dysregulation (p ≤ 0.05). The GP risk allele rs6984536A (Peroxidasin-Like; PXDNL) was associated with increased abdominal pain severity scores (Beta = 0.13, p = 0.03). Gastric muscularis expression of PXDNL also positively correlated with abdominal pain in GP patients (r = 0.8, p = 0.02). Dickkopf WNT Signaling Pathway Inhibitor 1 showed decreased expression in diabetic GP patients (p = 0.005 vs. controls).

CONCLUSION: We report preliminary GWAS findings for GP, which highlight candidate genes and pathways related to immune and sensory-motor dysregulation. Larger studies are needed to validate and expand these findings in independent datasets.

Citation Key13525
PubMed ID37688361
PubMed Central IDPMC10576603
Grant ListUL1TR000135 / TR / NCATS NIH HHS / United States
UL1TR000424 / TR / NCATS NIH HHS / United States
U01/U24DK074008 / DK / NIDDK NIH HHS / United States
U01DK073974 / DK / NIDDK NIH HHS / United States
U01DK073975 / DK / NIDDK NIH HHS / United States
U01DK073983 / DK / NIDDK NIH HHS / United States
U01DK074007 / DK / NIDDK NIH HHS / United States
U01DK074035 / DK / NIDDK NIH HHS / United States
U01DK112193 / DK / NIDDK NIH HHS / United States
U01DK112194 / DK / NIDDK NIH HHS / United States