Prediction of disease status: A regressive model approach for repeated measures

TitlePrediction of disease status: A regressive model approach for repeated measures
Publication TypeJournal Article
Year of Publication2010
AuthorsM. Islam, A, Chowdhury, RI
JournalStatistical Methodology
Volume7
Issue5
Pagination520-540
Call Numbernewpubs20100729_Islam.pdf
KeywordsHealth Conditions and Status, Methodology, Other, Risk Taking
Abstract

In this paper, regressive models are proposed for modeling a sequence of transitions in longitudinal data. These models are employed to predict the future status of the outcome variable of the individuals on the basis of their underlying background characteristics or risk factors. The estimation of parameters and also estimates of conditional and unconditional probabilities are shown for repeated measures. The goodness of fit tests are extended in this paper on the basis of the deviance and the Hosmer-Lemeshow procedures and generalized to repeated measures. In addition, to measure the suitability of the proposed models for predicting the disease status, we have extended the ROC curve approach to repeated measures. The procedure is shown for the conditional models for any order as well as for the unconditional model, to predict the outcome at the end of the study. The test procedures are also suggested. For testing the differences between areas under the ROC curves in subsequent follow-ups, two different test procedures are employed, one of which is based on permutation test. In this paper, an unconditional model is proposed on the basis of conditional models for the disease progression of depression among the elderly population in the USA on the basis of the Health and Retirement Survey data collected longitudinally. The illustration shows that the disease progression observed conditionally can be employed to predict the outcome and the role of selected variables and the previous outcomes can be utilized for predictive purposes. The results show that the percentage of correct predictions of a disease is quite high and the measures of sensitivity and specificity are also reasonably impressive. The extended measures of area under the ROC curve show that the models provide a reasonably good fit in terms of predicting the disease status during a long period of time. This procedure will have extensive applications in the field of longitudinal data analysis where the objective is to obtain estimates of unconditional probabilities on the basis of series of conditional transitional models.

Endnote Keywords

methodology/risk Factors/disease/Hosmer-Lemeshow

Endnote ID

23000

Citation Key7478