Modelling and predicting complex patterns of change using growth component models: An application to depression trajectories in cancer patients

TitleModelling and predicting complex patterns of change using growth component models: An application to depression trajectories in cancer patients
Publication TypeJournal Article
Year of Publication2013
AuthorsMayer, A, Geiser, C, Infurna, FJ, Fiege, C
JournalEuropean Journal of Developmental Psychology
Volume10
Issue1
Pagination40-59
KeywordsHealth Conditions and Status, Methodology, Public Policy
Abstract

In this paper we present a general and flexible framework for constructively defining growth components to model complex change processes. Building on the concepts of the latent state-trait theory (LST theory; Steyer, Ferring, and Schmitt, 1992), we develop structural equation models containing latent variables that represent latent growth (change) components of interest. We formulate these models based on an approach presented by Mayer, Steyer and Mueller (2012). We discuss an application to the longitudinal course of depression in 2,794 individuals from the Health and Retirement Study, who experienced cancer diagnosis over the course of the study. We found that (1) on average, the depression trajectories showed a steep increase after diagnosis as well as an adaptation phase where levels returned back to levels prior to diagnosis, and (2) individual differences in change were large and could be partly explained by marital status and cognitive functioning.

Notes

Times Cited: 0

DOI10.1080/17405629.2012.732721
Endnote Keywords

Growth components/Multiple-indicator latent growth curve models/True change models/Method factors/Depression/Cancer diagnosis

Endnote ID

69172

Citation Key7868