Long-Term BMI Trajectories and Health in Older Adults: Hierarchical Clustering of Functional Curves

TitleLong-Term BMI Trajectories and Health in Older Adults: Hierarchical Clustering of Functional Curves
Publication TypeJournal Article
Year of Publication2015
AuthorsZajacova, A, Huzurbazar, S, Greenwood, M, Nguyen, H
JournalJournal of Aging and Health
Volume27
Issue8
Pagination1443-1461
KeywordsDemographics, Health Conditions and Status, Methodology
Abstract

Objective: This project contributes to the emerging research that aims to identify distinct body mass index (BMI) trajectory types in the population. We identify clusters of long-term BMI curves among older adults and determine how the clusters differ with respect to initial health. Method: Health and Retirement Study cohort (N = 9,893) with BMI information collected in up to 10 waves (1992-2010) is analyzed using a powerful cutting-edge approach: hierarchical clustering of BMI functions estimated via the Principal Analysis by Conditional Expectations (PACE) algorithm. Results: Three BMI trajectory clusters emerged for each gender: stable, gaining, and losing. The initial health of the gaining and stable groups in both genders was comparable; the losing cluster experienced significantly poorer health at baseline. Discussion: BMI trajectories among older adults cluster into distinct types in both genders, and the clusters vary substantially in initial health. Weight loss but not gain is associated with poor initial health in this age group.

URLhttp://jah.sagepub.com/content/early/2015/04/22/0898264315584329.abstract
DOI10.1177/0898264315584329
Endnote Keywords

BMI trajectories/BMI trajectory clusters/health/older adults/functional data analysis

Endnote ID

999999

Citation Key8325